首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CYP2E1 metabolizes ethanol leading to production of reactive oxygen species (ROS) and acetaldehyde, which are known to cause not only liver damage but also toxicity to other organs. However, the signaling pathways involved in CYP2E1 regulation by ethanol are not clear, especially in extra-hepatic cells. This study was designed to examine the role of CYP2E1 in ethanol-mediated oxidative stress and cytotoxicity, as well as signaling pathways by which ethanol regulates CYP2E1 in extra-hepatic cells. In this study, we used astrocytic and monocytic cell lines, because they are important cells in central nervous system . Our results showed that 100 mM ethanol significantly induced oxidative stress, apoptosis, and cell death at 24 h in the SVGA astrocytic cell line, which was rescued by a CYP2E1 selective inhibitor, diallyl sulfide (DAS), CYP2E1 siRNA, and antioxidants (vitamins C and E). Further, we showed that DAS and vitamin C abrogated ethanol-mediated (50 mℳ) induction of CYP2E1 at 6 h, as well as production of ROS at 2 h, suggesting the role of oxidative stress in ethanol-mediated induction of CYP2E1. We then investigated the role of the protein kinase C/c-Jun N-terminal kinase/specificity protein1 (PKC/JNK/SP1) pathway in oxidative stress-mediated CYP2E1 induction. Our results showed that staurosporine, a non-specific inhibitor of PKC, as well as specific PKCζ inhibitor and PKCζ siRNA, abolished ethanol-induced CYP2E1 expression. In addition, inhibitors of JNK (SP600125) and SP1 (mithramycin A) completely abrogated induction of CYP2E1 by ethanol in SVGA astrocytes. Subsequently, we showed that CYP2E1 is also responsible for ethanol-mediated oxidative stress and apoptotic cell death in U937 monocytic cell lines. Finally, our results showed that PKC/JNK/SP1 pathway is also involved in regulation of CYP2E1 in U937 cells. This study has clinical implications with respect to alcohol-associated neuroinflammatory toxicity among alcohol users.  相似文献   

2.
3.
4.
5.
BackgroundAlcohol consumption is considered to be a major health problem among people living with HIV/AIDS. Our previous reports have shown that ethanol reduced intracellular concentrations of antiretroviral drugs elvitegravir and darunavir in the HIV-1-infected U1 cell line. Ethanol also increased HIV-1 replication despite the presence of elvitegravir. Our previous finding has also shown that the levels of cytochrome P450 enzyme 2E1 (CYP2E1) and oxidative stress in blood monocytes were induced, while the concentration of alcohol in the plasma was reduced in HIV-1-infected alcohol users compared to uninfected alcohol users. However, the role of CYP2E1 in ethanol-enhanced oxidative stress and HIV-1 replication is still unclear.MethodsThis study examined the chronic effects (14 days) of ethanol on HIV viral load, oxidative DNA damage, expression of CYP2E1, expression of antioxidant enzymes (AOEs), expression of reactive oxygen species (ROS) in human monocyte-derived macrophages (MDM). Further, to evaluate the role of CYP2E1 in mediating ethanol-induced viral replication, CYP2E1 siRNA and CYP2E1 selective inhibitor were used in the HIV-1-infected U1 cell line following ethanol treatment.ResultsChronic ethanol exposure demonstrated an increase in oxidative DNA damage and CYP2E1 expression in both non-infected and HIV-1-infected MDM. Our results showed that ethanol chronic exposure increased HIV-1 replication by ~3-fold in HIV-1-infected MDM. This ethanol-enhanced HIV-1 replication was associated with an increased oxidative DNA damage, an increased expression of CYP2E1, and a decreased expression of antioxidant enzyme PRDX6. In HIV-1-infected U1 cell line, we observed a decreased viral replication (~30%) and a decreased DNA damage (~100%) after repression of CYP2E1 by siRNA, upon ethanol exposure. We also observed a decreased viral replication (~25%) after inhibition of CYP2E1 by using selective CYP2E1 inhibitor.ConclusionsThe data suggest that chronic ethanol exposure increases HIV-1 replication in MDM, at least in part, through CYP2E1-mediated oxidative stress. These results are clinically relevant to potentially find effective treatment strategies for HIV-1-infected alcohol users.  相似文献   

6.
7.
8.
9.
LL202, a newly synthesized flavonoid derivative, has been confirmed to inhibit the mitogen-activated protein kinase pathway and activation protein-1 activation in monocytes; however, the anti-inflammatory mechanism has not been clearly studied. Uncontrolled overproduction of reactive oxygen species (ROS) has involved in oxidative damage of inflammatory bowel disease. In this study, we investigated that LL202 reduced lipopolysaccharide (LPS)-induced ROS production and malondialdehyde levels and increased superoxide dismutase, glutathione, and total antioxidant capacity in RAW264.7 cells. Mechanically, LL202 could upregulate heme oxygenase-1 (HO-1) via promoting nuclear translocation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) to regulate LPS-induced oxidative stress in macrophages. In vivo, we validated the role of LL202 in dextran sulfate sodium- and TNBS-induced colitis models, respectively. The results showed that LL202 decreased the proinflammatory cytokine expression and regulated colonic oxidative stress by activating the Nrf2/HO-1 pathway. In conclusion, our study showed that LL202 exerts an anti-inflammatory effect by enhancing the antioxidant capacity of the Nrf2/HO-1 pathway to macrophages.  相似文献   

10.
11.
12.
Induction of phase II antioxidant enzymes by activation of Nrf2/ARE (antioxidant response element) signaling has been considered as a promising strategy to combat with oxidative stress-related diseases. In the present study, we tested for potential effects of sesamin, a major lignan contained in sesame seeds, its stereoisomer episesamin, and their metabolites on Nrf2/ARE activation in rat pheochromocytoma PC12 cells. Luciferase reporter assays showed that primary metabolites of sesamin and episesamin, SC-1 and EC-1 were the most potent ARE activators among all tested compounds. SC-1 {(1R,2S,5R,6S)-6-(3,4-dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo-[3,3,0]octane} enhanced nuclear translocation of Nrf2 and up-regulated expression of phase II antioxidant enzymes including heme oxygenase-1 (HO-1). Treatment with SC-1 resulted in increased phosphorylation of p38 MAP kinase and transient increase in intracellular ROS levels. N-acetylcysteine (NAC) treatment abolished p38 phosphorylation as well as HO-1 induction caused by SC-1, indicating that ROS are upstream signals of p38 in Nrf2/ARE activation by SC-1. Furthermore, preconditioning with SC-1 attenuated H(2)O(2)-induced cell death in a dose-dependent manner. Finally, treatment with a HO-1 inhibitor, Zn-protoporphyrin (ZnPP), and overexpression of a dominant-negative mutant of Nrf2 diminished SC-1-mediated neuroprotection. Our results demonstrate that SC-1 is capable of protecting against oxidative stress-induced neuronal cell death in part through induction of HO-1 via Nrf2/ARE activation, suggesting its potential to reduce oxidative stress and ameliorate oxidative stress-related neurodegenerative diseases.  相似文献   

13.
14.
15.
16.
This study characterized the upstream signalling molecules involved in extracellular signal-regulated kinase (ERK) 1/2 activation and determined their effects on differential tumour necrosis factor (TNF)-alpha expression by monocytes/macrophages infected with virulent or avirulent mycobacteria. The avirulent Mycobacterium tuberculosis (MTB) strain H37Ra (MTBRa) induced higher levels of activation of ERK 1/2 and the upstream MAPK kinase (MEK)1 and, subsequently, higher levels of TNF-alpha expression in human primary monocytes and monocyte-derived macrophages, as compared with MTB strain H37Rv (MTBRv). The MTB-induced activation of ERK 1/2 was not dependent on Ras or Raf. However, inhibition of the activity of atypical protein kinase C (PKC) zeta decreased the in vitro phosphorylation of MEK, ERK 1/2 activation and subsequent TNF-alpha induction caused by MTBRv or MTBRa. Toll-like receptor (TLR) 2 was found to play a major role in MTB-induced TNF-alpha expression and PKCzeta phosphorylation. Co-immunoprecipitation experiments showed that PKCzeta interacts physically with TLR2 after MTB stimulation. Moreover, PKCzeta phosphorylation was increased more in macrophages following MTBRa, versus MTBRv, infection. This is the first demonstration that PKCzeta interacts with TLR2 to play an essential role in MTB-induced ERK 1/2 activation and subsequent TNF-alpha expression in monocytes/macrophages.  相似文献   

17.
18.
The Nrf2/antioxidant response element (ARE) signaling pathway plays a key role in activating cellular antioxidants, including heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase-1 (NQO1), and glutathione. Protein kinase C (PKC) may also regulate these antioxidants, as PKC phosphorylates Nrf2 in vitro. This study examined the role of PKC in ARE-mediated gene regulation in human monocytes by curcumin, a potent inducer of the Nrf2/ARE pathway. Curcumin increased HO-1 and glutamyl cysteine ligase modulator (GCLM) expression and stimulated Nrf2 binding to the ARE. Curcumin also rapidly stimulated PKC phosphorylation and Ro-31-8220, a pan-PKC inhibitor, decreased curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Rottlerin (a PKC delta inhibitor) and PKC delta antisense oligonucleotides significantly inhibited curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Furthermore, a p38 MAP kinase inhibitor reduced GCLM and HO-1 expression and rottlerin inhibited curcumin-induced p38 phosphorylation. In summary, curcumin activates ARE-mediated gene expression in human monocytes via PKC delta, upstream of p38 and Nrf2.  相似文献   

19.
The Nrf2/ARE pathway plays a pivotal role in chemoprevention and neuroprotection. Here, we report that sesquiterpene lactones extracted from Calea urticifolia and feverfew increased enhancer activity of the ARE. ARE activation was dependent on the number of α,β-unsaturated carbonyl groups each compound bears and calealactone A (CL-A) harboring 3 of those was the most potent ARE inducer. At subtoxic doses, CL-A induced expression of heme oxygenase-1 (HO-1) gene, one of ARE target genes, through activation of the Nrf2/ARE pathway involving transient ROS generation and activation of PI3-K/Akt and MAPK pathways. Interestingly, H2O2-induced ARE activation and HO-1 induction were potentiated by pretreatment with CL-A at lower concentrations, at which Nrf2/ARE activation by the compound was minimal. These results suggest a possibility that preconditioning by sesquiterpene lactone may enhance activation of the Nrf2/ARE pathway and induction of phase II detoxification/antioxidant enzymes upon oxidative stress, thereby resulting in increased resistance to oxidative damage.  相似文献   

20.
Galpha12 and Galpha13 function as molecular regulators responding to extracellular stimuli. NF-E2-related factor 2 (Nrf2) is involved in a protective adaptive response to oxidative stress. This study investigated the regulation of Nrf2 by Galpha12 and Galpha13. A deficiency of Galpha12, but not of Galpha13, enhanced Nrf2 activity and target gene transactivation in embryo fibroblasts. In mice, Galpha12 knockout activated Nrf2 and thereby facilitated heme catabolism to bilirubin and its glucuronosyl conjugations. An oligonucleotide microarray demonstrated the transactivation of Nrf2 target genes by Galpha12 gene knockout. Galpha12 deficiency reduced Jun N-terminal protein kinase (JNK)-dependent Nrf2 ubiquitination required for proteasomal degradation, and so did Galpha13 deficiency. The absence of Galpha12, but not of Galpha13, increased protein kinase C delta (PKC delta) activation and the PKC delta-mediated serine phosphorylation of Nrf2. Galpha13 gene knockout or knockdown abrogated the Nrf2 phosphorylation induced by Galpha12 deficiency, suggesting that relief from Galpha12 repression leads to the Galpha13-mediated activation of Nrf2. Constitutive activation of Galpha13 promoted Nrf2 activity and target gene induction via Rho-mediated PKC delta activation, corroborating positive regulation by Galpha13. In summary, Galpha12 and Galpha13 transmit a JNK-dependent signal for Nrf2 ubiquitination, whereas Galpha13 regulates Rho-PKC delta-mediated Nrf2 phosphorylation, which is negatively balanced by Galpha12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号