首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: To evaluate the presence of Shiga toxin-producing strains of Escherichia coli (STEC) of the O157:H7 serotype in living layer hens so as to analyse the role of this avian species as potential reservoir. METHODS AND RESULTS: Cloacal swabs were collected between November 2004 and November 2005 from four intensive management layer hen farms and analysed for STEC O157:H7 by immunomagnetic separation methods and multiplex polymerase chain reaction for stx1 and/or stx2, the E. coli attaching and effacing (eae) and hly genes. STEC was detected in 26 of the 720 samples. CONCLUSIONS: The layer hens analysed were shown to carry STEC O157:H7. The presence of this bacterium in living layer hen farms investigated did not result in any detectable increase in gastrointestinal disease in this species. SIGNIFICANCE AND IMPACT OF THE STUDY: Living layer hens are a novel potential reservoir of E. coli O157:H7.  相似文献   

2.

Background

In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference.

Results

Growth at 37°C of E. coli O26:H11, O88:H21, O91:H21, O111:H-, O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested.

Conclusions

This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7.  相似文献   

3.
AIMS: Isolation and recognition of the prominent Shiga toxin (Stx)-producing strains of Escherichia coli (STEC) serovar O157:H7 can be confirmed easily by their late fermentation of sorbitol and lack of beta-glucuronidase activity, but there has been no culture method of choice for detecting non-O157 STEC strains because of their biochemical diversity. Apart from Stx, many STEC strains produce enterohaemolysin (Ehly) regardless of their serovars. METHODS AND RESULTS: Although washed blood agar media, with or without the addition of antibiotics (vancomycin, cefixime, and cefsulodin) (WBA and WBVCCA), have been used to detect Ehly, a proportion of STEC strains consistently failed to produce haemolysin on these media. Washed blood agar medium was therefore studied further in order to increase the yield of strains producing Ehly. CONCLUSION: It was found that the addition of 0.5 microg ml(-1) of mitomycin C to the agar medium (WBMA) markedly increased the number of such strains. Thus, of 185 STEC strains comprising 95 O157 and 90 non-O157 STEC consisting of 34 serovars. Ninety-seven per cent of these strains produced haemolysis on WBMA, compared with only 76% and 83%, respectively, on WBA and WBVCCA. SIGNIFICANCE AND IMPACT OF THE STUDY: The appearance of the Ehly zone of haemolysis that was easily distinguishable from that of alpha-haemolysin was enhanced by the incorporation of mitimycin C into washed-blood medium.  相似文献   

4.
5.
To identify Shiga toxin-producing Escherichia coli genes associated with severe human disease, a genomic subtraction technique was used with hemolytic-uremic syndrome-associated O91:H21 strain CH014 and O6:H10 bovine strains. The method was adapted to the Shiga toxin-producing E. coli genome: three rounds of subtraction were used to isolate DNA fragments specific to strain CH014. The fragments were characterized by genetic support analysis, sequencing, and hybridization to the genome of a collection of Shiga toxin-producing E. coli strains. A total of 42 fragments were found, 19 of which correspond to previously identified unique DNA sequences in the enterohemorrhagic E. coli EDL933 reference strain, including 7 fragments corresponding to prophage sequences and others encoding candidate virulence factors, such a SepA homolog protein and a fimbrial usher protein. In addition, the subtraction procedure yielded plasmid-related sequences from Shigella flexneri and enteropathogenic and Shiga toxin-producing E. coli virulence plasmids. We found that lateral gene transfer is extensive in strain CH014, and we discuss the role of genomic mobile elements, especially bacteriophages, in the evolution and possible transfer of virulence determinants.  相似文献   

6.
PM61 is a chain-forming envC strain of Escherichia coli with a leaky outer membrane. It was found to have an oversized penicillin-binding protein 3, which was the result of an IS4 insertion in the prc gene. The other properties of PM61 were caused by the envC mutation. We cloned the envC (yibP) gene and identified the mutation site, causing a single residue substitution, H366Y, in the PM61 envC allele. The gene product was predicted to be a periplasmic protein having coiled-coil structure in the N-terminal region and homology to lysostaphin in the C-terminal region. Overexpression of envC inhibited cell growth, and overexpression of the PM61 mutant allele caused cell lysis. Disruption of the chromosomal envC caused the same defects as the envC point mutation, indicating the gene is dispensable for growth but important for normal septation/separation and cell envelope integrity.  相似文献   

7.
8-hydroxyquinoline-beta-D-glucuronide (HQG) was used to improve the presumptive identification of Shiga toxin-producing Escherichia coli O157 (STEC O157) on sorbitol MacConkey agars (SMAC). Advantages of HQG are (i) that it is less expensive than 5-bromo-4-chloro-3-indoxyl-glucuronide; (ii) that it is visible in normal daylight and (iii) that it does not diffuse into the agar like 4-methylumbelliferryl-beta-D-glucuronide (MUG). Sixteen STEC O157 isolates, 91 bovine mastitis-associated E. coli isolates and 222 faecal E. coli isolates from apparently healthy cattle were used in this study. 4-methylumbelliferryl-beta-D-glucuronide detected beta-glucuronidase activity in more isolates than HQG (P < 0.05). On SMAC with HQG, cefixime and tellurite all STEC O157 isolates grew as cream-coloured colonies (100% sensitivity), whereas all non-STEC O157 E. coli except one grew either not at all or as purple or black colonies (99.7% specificity). No difference was found between faecal and mastitis isolates for the proportion of isolates that hydrolysed HQG or MUG or fermented sorbitol. However, significantly more mastitis isolates were able to grow in the presence of the cefixime-tellurite supplement. 8-Hydroxyquinoline-beta-D-glucuronide is a useful substrate for the identification of STEC O157 on SMAC.  相似文献   

8.
In 2011, Germany experienced the largest outbreak with a Shiga toxin-producing Escherichia coli (STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregative E. coli (EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagic E. coli (EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) O157 is a formidable human pathogen with the capacity to cause large outbreaks of gastrointestinal illness. The known virulence factors of this organism are encoded on phage, plasmid and chromosomal genes. There are also likely to be novel, as yet unknown virulence factors in this organism. Many of these virulence factors have been acquired by E. coli O157 by transfer from other organisms, both E. coli and non-E. coli species. By examination of biochemical and genetic characteristics of various E. coli O157 strains and the relationships with other organisms, an evolutionary pathway for development of E. coli O157 as a pathogen has been proposed. E. coli O157 evolved from an enteropathogenic E. coli ancestor of serotype O55:H7, which contained the locus of enterocyte effacement containing the adhesin intimin. During the evolutionary process, Shiga toxins, the pO157 plasmid and other characteristics which enhanced virulence were acquired and other functions such as motility, sorbitol fermentation and β-glucuronidase activity were lost by some strains. It is likely that E. coli O157 is constantly evolving, and changes can be detected in genetic patterns during the course of infection. A variety of mechanisms may be responsible for the development of the virulent phenotype that we see today. Such changes include uptake of as yet uncharacterised virulence factors, possibly enhanced by a mutator phenotype, recombination within virulence genes to produce variant genes with different properties, loss of large segments of DNA (black holes) to enhance virulence and possible adaptation to different hosts. Although little is known about the evolution of non-O157 STEC it is likely that the most virulent clones evolved in a similar manner to E. coli O157. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
Bacteriophages are associated with reduced fecal shedding of Shiga-toxin-producing Escherichia coli O157:H7 (STEC O157:H7) in cattle. Four phages exhibiting activity against 12 of 14 STEC O157:H7 strains, representing 11 common phage types, were isolated. Phages did not lyse non-O157 E. coli, with 11 of the 12 STEC strains exhibiting extreme susceptibility (average multiplicity of infection (MOI) = 0.0003-0.0007). All phages had icosahedral heads with tapered, noncontractile tails, a morphology indicative of T1-like Siphoviridae. Genome size of all phages was ~44 kb, but EcoR? or HindIII digestion profiles differed among phages. Based on restriction enzyme digestion profiles, phages AHP24, AHS24, and AHP42 were more related (66.7%-82.4%) to each other than to AKS96, while AHP24 and AHS24, isolated from the same feedlot pen, exhibited the highest identity (88.9%-92.3%). Phages AHP24 and AHS24 exhibited the broadest host range and strongest lytic activity against STEC O157:H7, making them strong candidates for biocontrol of this bacterium in cattle.  相似文献   

11.
A total of 365 faecal samples from different categories of cattle, 12 samples of untreated slurry, 50 samples of fresh droppings of feral domestic pigeons, 20 samples of fresh droppings of domestic sparrows and stool samples of 19 synanthropic rodents were examined for the presence of Escherichia coli by broth enrichment culture and a subsequent immunomagnetic separation. Escherichia coli O157 was found in 72 (20%) bovine samples, six (50%) samples of untreated slurry and four (40%) of 10 rats (Rattus norvegicus). Significant differences were found in the E. coli O157 shedding frequency between different age categories of bulls. Genes stx2 and eaeA were detected in all isolates, and the stx1 gene in all but 10 isolates.  相似文献   

12.
Aims:  To evaluate host range and lytic capability of four bacteriophages (rV5, wV7, wV8 and wV11) against Escherichia coli O157:H7 (STEC O157:H7) from cattle and humans.
Methods and Results:  Four hundred and twenty-two STEC O157:H7 isolates (297 bovine; 125 human) were obtained in Alberta, Canada. The four phages were serially diluted and incubated for 5 h with overnight cultures of STEC O157:H7 to estimate their multiplicity of infection (MOI). All bovine STEC O157:H7 were subjected to pulsed-field gel electrophoresis (PFGE) and phage typing (PT). Phage wV7 lysed all human and bovine isolates irrespective of PFGE genotype or PT phenotype and exhibited the lowest MOI (0·004–0·006, P  < 0·0001) of all phages. Phages rV5 and wV11 exhibited a lower MOI (0·002–0·04, P  < 0·0001) than did phage wV8 (25–29) and they had a narrower host range than wV7 or wV8. Phages rV5, wV11 and wV8 lysed 342 (81·0%), 321 (76·1%) and 407 (96·4%), respectively, of the 422 isolates. Susceptibility of bovine STEC O157:H7 to rV5, w11 and wV8 was influenced by PFGE genotype and/or PT phenotype.
Conclusions:  Phages exhibited activity against the majority of bovine and human STEC O157:H7 isolates. PFGE genotype and/or PT phenotype of the host-target influenced their vulnerability to phage attack. Susceptibility of bovine STEC O157:H7 to phage may also differ among farms. Both lytic capability and host range should be considered in the selection of therapeutic phage for on-farm control of STEC O157:H7.
Significance and Impact of the Study:  The present work indicates that a four-phage cocktail should be equally effective at mitigating STEC O157:H7 isolates both of bovine and of human origin. Given that some STEC O157:H7 exhibited resistance to some but not all phages, a phage cocktail is the logical approach to efficacious on-farm therapy.  相似文献   

13.
Escherichia coli O26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms. E. coli O157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore, E. coli O26:H11 remains a potential risk in food safety.  相似文献   

14.
Isogenic strains of Escherichia coli O157:H7, missing either stx2 or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

15.
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.Enterohemorrhagic Escherichia coli is associated with diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans (31). E. coli serotype O157:H7 predominates in epidemics and sporadic cases of enterohemorrhagic E. coli-related infections in the United States, Canada, Japan, and the United Kingdom (12). Cattle are considered the most important reservoir of E. coli O157:H7 (10, 24, 37, 41), and foods contaminated with bovine feces are thought to be the most common source of human infection with this pathogen (27, 33). The two most important virulence factors of the organism are the production of one or more Shiga toxins (Stx) (6, 20, 32) and the ability to attach to and efface microvilli of host intestinal cells (AE). Stx genes are encoded by temperate bacteriophage inserted in the bacterial chromosome, and genes responsible for the AE phenotype are located on the locus of enterocyte effacement (LEE) as well as other pathogenicity islands (4, 17). All E. coli O157:H7 strains also possess a large plasmid which is thought to play a role in virulence (10, 40, 42).Octamer-based genome scanning (OBGS) was first used to show that E. coli O157 strains from the United States and Australia could be subdivided into two genetically distinct lineages (21, 22, 46). While both E. coli O157:H7 lineages are associated with human disease and are isolated from cattle, there is a bias in the host distribution between the two lineages, with a significantly higher proportion of lineage I strains isolated from humans than lineage II strains. Several recent studies have shown that there are inherent differences in gene content and expression between populations of lineage I and lineage II E. coli O157:H7 strains. Lejeune et al. (26) reported that the antiterminator Q gene of the stx2-converting bacteriophage 933W was found in all nine OBGS lineage I strains examined but in only two of seven lineage II strains, suggesting that there may be lineage-specific differences in toxin production. Dowd and Ishizaki (9) used DNA microarray analysis to examine expression of 610 E. coli O157:H7 genes and showed that lineage I and lineage II E. coli O157:H7 strains have evolved distinct patterns of gene expression which may alter their virulence and their ability to survive in different microenvironments and colonize the intestines of different hosts (9, 28, 38).The observations of lineage host bias have been supported and extended by studies using a six-locus-based multiplex PCR termed the lineage-specific polymorphism assay (LSPA-6) (46). However, Ziebell et al. (48) have recently shown that not all LSPA-6 types within lineage II are host biased; e.g., LSPA-6 type 211111 isolation rates from humans and cattle were significantly different from those of other lineage II LSPA-6 types. Therefore, a clearer definition is required of not only the differences between lineages but also the differences among clonal groups within lineages.The genome sequences of two E. coli O157:H7 strains, Sakai and EDL933 (14, 36), have been determined; however, both of these strains are of lineage I, and there are presently no completed and fully annotated genome sequences available for lineage II strains. In our laboratory, comparative studies utilizing suppression subtractive hybridization (SSH) and comparative genomic hybridization revealed numerous potential virulence factors that are conserved in lineage I strains and that are rare or absent in lineage II strains (42, 47). In this study, we have used SSH to identify genomic regions present in E. coli O157:H7 lineage II strains that are absent from lineage I strains. We wished to examine the distribution of these novel gene segments in E. coli O157:H7 strains and gain insight into their origins and functions. We also attempted to identify molecular markers specific to lineage II strains as well as other markers that would be useful in the genetic subtyping or molecular fingerprinting of E. coli O157:H7 strains in population and epidemiological studies (25). This information may be helpful in the identification of genotypes of the organism associated with specific phenotypes of both lesser and greater virulence (29).  相似文献   

16.
AIM: To determine the sensitivity of methods for detection of injured and uninjured Escherichia coli O157:H7 (E. coli O157) in raw and pasteurized milk. METHODS AND RESULTS: Raw milk, pasteurized milk with 1.5% fat content and pasteurized milk with 3.5% fat content were spiked with E. coli O157 at low levels. The samples were enriched in modified tryptone soya broth with novobiocin (mTSBn) at 37 degrees C. Aliquots of the enriched culture were analysed either by manual immunomagnetic separation (MIMS) and culturing on sorbitol MacConkey agar with or without cefixime and potassium tellurite (SMACct or SMAC), or by automated immunomagnetic separation and integrated ELISA (EiaFosstrade mark). Uninjured E. coli O157 organisms were detected in milk by both methods at 1 cfu 10 ml-1 sample). Injured organisms were detected at levels of about 4 cfu 10 ml-1 sample. Direct enrichment in mTSBn (22 h incubation) showed better sensitivity for injured cells than enrichment in buffered peptone water (BPW, 22 h incubation), or in a two-step enrichment consisting of BPW (6 h, 37 degrees C) and mTSBn (16 h, 37 degrees C), successively. CONCLUSIONS: The methods showed equal sensitivity in that they were both able to detect 1 cfu 10 ml-1 milk sample. Injured organisms can be detected and isolated at a level almost as low as this. A resuscitation step is not recommended for the detection and isolation of injured and non-injured E. coli O157 from milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to the dilution of contamination in the bulk tank, analysis of milk for the presence of E. coli O157 requires a very sensitive method. Both methods described here are useful for such analysis.  相似文献   

17.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

18.
Isogenic strains of Escherichia coli O157:H7, missing either stx(2) or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

19.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

20.
As it descended from Escherichia coli O55:H7, Shiga toxin (Stx)-producing E. coli (STEC) O157:H7 is believed to have acquired, in sequence, a bacteriophage encoding Stx2 and another encoding Stx1. Between these events, sorbitol-fermenting E. coli O157:H(-) presumably diverged from this clade. We employed PCR and sequence analyses to investigate sites of bacteriophage integration into the chromosome, using evolutionarily informative STEC to trace the sequence of acquisition of elements encoding Stx. Contrary to expectations from the two currently sequenced strains, truncated bacteriophages occupy yehV in almost all E. coli O157:H7 strains that lack stx(1) (stx(1)-negative strains). Two truncated variants were determined to contain either GTT or TGACTGTT sequence, in lieu of 20,214 or 18,895 bp, respectively, of the bacteriophage central region. A single-nucleotide polymorphism in the latter variant suggests that recombination in that element extended beyond the inserted octamer. An stx(2) bacteriophage usually occupies wrbA in stx(1)(+)/stx(2)(+) E. coli O157:H7, but wrbA is unexpectedly unoccupied in most stx(1)-negative/stx(2)(+) E. coli O157:H7 strains, the presumed progenitors of stx(1)(+)/stx(2)(+) E. coli O157:H7. Trimethoprim-sulfamethoxazole promotes the excision of all, and ciprofloxacin and fosfomycin significantly promote the excision of a subset of complete and truncated stx bacteriophages from the E. coli O157:H7 strains tested; bile salts usually attenuate excision. These data demonstrate the unexpected diversity of the chromosomal architecture of E. coli O157:H7 (with novel truncated bacteriophages and multiple stx(2) bacteriophage insertion sites), suggest that stx(1) acquisition might be a multistep process, and compel the consideration of multiple exogenous factors, including antibiotics and bile, when chromosome stability is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号