首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two alternative (but not mutually exclusive) hypotheses were contrasted for their abilities to explain the distribution of parthenogenesis in the freshwater snail Potamopyrgus antipodarum: the reproductive assurance hypothesis, which predicts that parthenogenesis will be favored in sparse populations where mates are difficult to find, and the Red Queen hypothesis, which predicts that parthenogenesis will be favored in populations that have a low risk of parasitism. The results were inconsistent with the prediction of the reproductive assurance hypothesis; male frequency was not significantly or positively correlated with snail density. Thus, there was no support for any of the hypotheses for the maintenance of sex that rely on selection for reproductive assurance to explain the distribution of parthenogenesis (e.g., recombinational repair). The results, however, were consistent with the Red Queen hypothesis; male frequency was positively and significantly correlated with the frequency of individuals infected by trematodes. This correlation suggests that parthenogenetic females have replaced sexual females in populations where parasites are rare, and that sexual females have persisted in populations where parasites are common.  相似文献   

2.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

3.
With a few rare exceptions, the vast majority of animals reproduce sexually. Some species have, however, evolved alternative modes of reproduction by shifting from classical bisexuality to unorthodox reproductive systems, like parthenogenesis, gynogenesis, or hybridogenesis. Under hybridogenesis, both the maternal and paternal genomes are expressed in somatic tissues, whereas the germline is purely maternal. Recently, a form of hybridogenesis at the level of the society has been reported in some ants, where purebred females develop into reproductive queens and interlineage hybrids into sterile workers. Here, we report a unique case of social hybridogenesis in the desert ant Cataglyphis hispanica. Workers are produced exclusively from interbreeding between two distinct genetic lineages, whereas male and female sexuals are produced by asexual reproduction through parthenogenesis. As a consequence, all workers are pure hybridogens, and only maternal genes are perpetuated from one generation to the next. Thus, queens of C. hispanica use sexual reproduction for colony growth, whereas they reproduce asexually through parthenogenesis for germline production.  相似文献   

4.
The twofold cost of sex implies that sexual and asexual reproduction do not coexist easily. Asexual forms tend to outcompete sexuals but may eventually suffer higher extinction rates, creating tension between short- and long-term advantages of different reproductive modes. The 'short-sightedness' of asexual reproduction takes a particularly intriguing form in gynogenetic species complexes, in which an asexual species requires sperm from a related sexual host species to trigger embryogenesis. Asexuals are then predicted to outcompete their host, after which neither species can persist. We examine whether spatial structure can explain continued coexistence of the species complex, and assess the evidence based on data on the Amazon molly (Poecilia formosa). A modification of the Levins metapopulation model creates two regions of good prospects for coexistence, connected by a region of poorer patch occupancy levels. In the first case, mate discrimination and/or niche differentiation keep local extinction rates low, and most patches contain both species; the other possibility resembles host-parasite dynamics where parasites frequently drive the host locally extinct. Several dynamical features are counterintuitive and relate to the parasitic nature of interactions in the species complex: for example, high local extinction rates of the asexual species can be beneficial for its own persistence. This creates a link from the evolution of sexual reproduction to that of prudent predation.  相似文献   

5.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

6.
It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.  相似文献   

7.
Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.  相似文献   

8.
Biological systems with asexual reproduction have often attracted research on parasites and host immune defence, because parasites are expected to be better able to exploit genetically less diverse populations. In addition, maternally inherited parasitic microorganisms such as Wolbachia can directly alter the reproductive systems of their hosts and induce parthenogenesis. In the freshwater ostracod Eucypris virens, both sexual and asexual reproduction is known, and we speculated that parasite pressures might help to explain their co‐existence. This species complex inhabits shallow, often eutrophic temporary water bodies, conditions that should provide ample opportunities for parasite infections. We surveyed natural populations of E. virens throughout its Europe‐wide range for natural parasites, and particularly tested for the presence of intracellular Wolbachia bacteria. Surprisingly, the results indicate that very few E. virens populations support parasite infections. We also found no evidence for the presence of Wolbachia in the populations screened. The results therefore show that parasitic infections do not play a role in the maintenance of sex in this system. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 207–216.  相似文献   

9.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

10.
11.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

12.
Parasites and sexual reproduction in psychid moths   总被引:4,自引:0,他引:4  
Persistence of sexual reproduction among coexisting asexual competitors has been a major paradox in evolutionary biology. The number of empirical studies is still very limited, as few systems with coexisting sexual and strictly asexual lineages have been found. We studied the ecological mechanisms behind the simultaneous coexistence of a sexually and an asexually reproducing closely related species of psychid moth in Central Finland between 1999 and 2001. The two species compete for the same resources and are often infected by the same hymenopteran parasitoids. They are extremely morphologically and behaviorally similar and can be separated only by their reproductive strategy (sexual vs. asexual) or by genetic markers. We compared the life-history traits of these species in two locations where they coexist to test predictions of the cost-of-sex hypothesis. We did not find any difference in female size, number of larvae, or offspring survival between the sexuals and asexuals, indicating that sexuals are subject to cost of sex. We also used genetic markers to check and exclude the possibility of Wolbachia bacteria infection inducing parthenogenesis. None of the samples was infected by Wolbachia and, thus, it is unlikely that these bacteria could affect our results. We sampled 38 locations to study the prevalence of parasitoids and the moths' reproductive strategy. We found a strong positive correlation between prevalence of sexual reproduction and prevalence of parasitoids. In locations where parasitoids are rare asexuals exist in high densities, whereas in locations with a high parasitoid load the sexual species was dominant. Spatial distribution alone does not explain the results. We suggest that the parasite hypothesis for sex may offer an explanation for the persistence of sexual moths in this system.  相似文献   

13.
The maintenance of obligate sex in animals is a long‐standing evolutionary paradox. To solve this puzzle, evolutionary models need to explain why obligately sexual populations consistently resist invasion by facultative strategies that combine the benefits of both sexual and asexual reproduction. Sexual antagonism and mate availability are thought to shape the occurrence of reproductive modes in facultative systems. But it is unclear how such factors interact with each other to influence facultative invasions and transitions to obligate asexuality. Using individual‐based models, we clarify how sexually antagonistic coevolution and mate availability affect the likelihood that a mutant allele that gives virgin females the ability to reproduce parthenogenetically will invade an obligately sexual population. We show that male coercion cannot stop the allele from spreading because mutants generally benefit by producing at least some offspring asexually prior to encountering males. We find that effects of sexual conflict can lead to positive frequency‐dependent dynamics, where the spread of the allele is promoted by effective (no‐cost) resistance when males are common, and by mate limitation when sex ratios are female‐biased. However, once the mutant allele fixes, effective coercion prevents the complete loss of sex unless linkage disequilibrium can build up between the allele and alleles for effective resistance. Our findings clarify how limitations of female resistance imposed by the genetic architecture of sexual antagonism can promote the maintenance of sexual reproduction. At the same time, our finding of widespread obligate sex when costs of parthenogenesis are high suggests that developmental constraints could contribute to the rarity of facultative reproductive strategies in nature.  相似文献   

14.
Over the last decade, genetic studies on social insects have revealed a remarkable diversity of unusual reproductive strategies, such as male clonality, female clonality, and social hybridogenesis. In this context, Cataglyphis desert ants are useful models because of their unique reproductive systems. In several species, queens conditionally use sexual reproduction and parthenogenesis to produce sterile workers and reproductive queens, respectively. In social hybridogenesis, two distinct genetic lineages coexist within a population, and workers result from mating between partners of different lineages; in contrast, queens and males are both produced asexually by parthenogenesis. Consequently, nonreproductive workers are all interlineage hybrids, whereas reproductives are all pure lineage individuals. Here, we characterized the reproductive systems of 11 species to investigate the distribution of the conditional use of sex and social hybridogenesis in Cataglyphis. We identified one new case in which sexual reproduction was conditionally used in the absence of dependent‐lineage reproduction. We also discovered five new instances of social hybridogenesis. Based on our phylogenetic analyses, we inferred that both the conditional use of sex and social hybridogenesis independently evolved multiple times in the genus Cataglyphis.  相似文献   

15.
Organisms that reproduce by sperm-dependent parthenogenesis are asexual clones that require sperm of a sexual host to initiate egg production, without the genome of the sperm contributing genetic information to the zygote. Although sperm-dependent parthenogenesis has some of the disadvantages of sex (requiring a mate) without the counterbalancing advantages (mixing of parental genotypes), it appears amongst a wide variety of species. We develop initial models for the density-dependent dynamics of animal populations with sperm-dependent parthenogenesis (pseudogamy or gynogenesis), based on the known biology of the common Enchytraeid worm Lumbricillus lineatus. Its sperm-dependent parthenogenetic populations are reproductive parasites of the hermaphrodite sexual form. Our logistic models reveal two alternative requirements for coexistence at density-dependent equilibria: (i) If the two forms differ in competitive ability, the form with the lower intrinsic birth rate must be compensated by a more than proportionately lower competitive impact from the other, relative to intraspecific competition, (ii) If the two forms differ in their intrinsic capacity to exploit resources, the sperm-dependent parthenogen must be superior in this respect and must have a lower intrinsic birth rate. In general for crowded environments we expect a sperm-dependent parthenogen to compete strongly for limiting resources with the sexual sibling species. Its competitive impact is likely to be weakened by its genetic uniformity, however, and this may suffice to cancel any advantage of higher intrinsic growth rate obtained from reproductive investment only in egg production. We discuss likely thresholds of coexistence for other sperm-dependent parthenogens. The fish Poeciliopsis monacha-lucida likewise obtains an intrinsic growth advantage from reduced investment in male gametes, and so its persistence is likely to depend on it being a poor competitor. The planarian Schmidtea polychroa obtains no such intrinsic benefit because it produces fertile sperm, and its persistence may depend on superior resource exploitation.  相似文献   

16.
Why don’t asexual females replace sexual females in most natural populations of eukaryotes? One promising explanation is that parasites could counter the reproductive advantages of asexual reproduction by exerting frequency‐dependent selection against common clones (the Red Queen hypothesis). One apparent limitation of the Red Queen theory, however, is that parasites would seem to be required by theory to be highly virulent. In the present study, I present a population‐dynamic view of competition between sexual females and asexual females that interact with co‐evolving parasites. The results show that asexual populations have higher carrying capacities, and more unstable population dynamics, than sexual populations. The results also suggest that the spread of a clone into a sexual population could increase the effective parasite virulence as population density increases. This combination of parasite‐mediated frequency‐dependent selection, and density‐dependent virulence, could lead to the coexistence of sexual and asexual reproductive strategies and the long‐term persistence of sex.  相似文献   

17.
Developmental biology is one of the fastest growing and fascinating research fields in life sciences. Among the wide range of embryonic development, a fundamental difference exists between organisms with sexual or asexual development. Aphids are unusual organisms which display alternative pathways of sexual and asexual development, the orientation of the pathway being determined by environmental conditions. These insects offer an adapted system in which to study developmental plasticity, because a side-by-side comparison of sexual and asexual development can be made in individuals with the same genotype. In this review, we describe the developmental mechanisms that have evolved in aphids for alternative sexual and asexual reproduction. In particular, we discuss how environmental cues orientate the reproductive mode of aphids from signal perception to endocrine regulation, and propose a comparative analysis of sexual and asexual gametogenesis and embryogenesis, which has been possible due to the development of molecular methods. As a result of the recent development of genomic resources in aphids, we expect these species will permit major advances in the study of the genomic basis underlying the choice of developmental fate and multiple reproduction strategies.  相似文献   

18.
R M Binks  M A Millar  M Byrne 《Heredity》2015,115(3):235-242
For plants with mixed reproductive capabilities, asexual reproduction is more frequent in rare species and is considered a strategy for persistence when sexual recruitment is limited. We investigate whether asexual reproduction contributes to the persistence of two co-occurring, rare sedges that both experience irregular seed set and if their differing geographic distributions have a role in the relative contribution of clonality. Genotypic richness was high (R=0.889±0.02) across the clustered populations of Lepidosperma sp. Mt Caudan and, where detected, clonal patches were small, both in ramet numbers (⩽3 ramets/genet) and physical size (1.3±0.1 m). In contrast, genotypic richness was lower in the isolated L. sp. Parker Range populations, albeit more variable (R=0.437±0.13), with genets as large as 17 ramets and up to 5.8 m in size. Aggregated clonal growth generated significant fine-scale genetic structure in both species but to a greater spatial extent and with additional genet-level structure in L. sp. Parker Range that is likely due to restricted seed dispersal. Despite both species being rare, asexual reproduction clearly has a more important role in the persistence of L. sp. Parker Range than L. sp. Mt Caudan. This is consistent with our prediction that limitations to sexual reproduction, via geographic isolation to effective gene exchange, can lead to greater contributions of asexual reproduction. These results demonstrate the role of population isolation in affecting the balance of alternate reproductive modes and the contextual nature of asexual reproduction in rare species.  相似文献   

19.
Species with sexual and asexual life cycles may exhibit intraspecific differences in reproductive effort. The spatial separation of sexual and asexual lineages, called geographic parthenogenesis, is common in plants, animals, and algae. Mastocarpus papillatus is a well‐documented case of geographic parthenogenesis in which sexuals dominate southern populations, asexuals dominate northern popula‐tions, whereas mixed populations occur throughout central California. We quantified abundances and reproductive effort of sexual and asexual fronds and tetrasporophytes at eight sites in California to test the hypotheses that (1) reduced sexual reproduction at higher latitudes and tidal heights explains the observed geographic parthenogenesis and (2) reproductive effort (spore production per blade area) declines with increasing latitude. Abundances of all phases varied site‐specifically. However, there was no geographic pattern of reproductive effort of fronds. Reproductive effort of fronds was greater in 2006 than in 2007 and correlated with sea surface temperatures. Sexual fronds exhibited greater reproductive effort than did asexual fronds and sexual reproductive effort was also inversely correlated with local upwelling index. Tetrasporophytes showed greater repro‐ductive effort in northern sites, but total supply of tetraspores per m2 was greatest in the middle of the sampling range where crusts were more abundant. There was no decline of reproductive effort at higher latitudes. Geographic patterns of fecundity of life stages do not explain geographic parthe‐nogenesis in M. papillatus. Site‐specific differences in viability among spores or established thalli of different life cycles may explain their respective geographic distributions, as the sexual and asexual life cycles responded differently to environmental variations.  相似文献   

20.
Thelytokous (all-female producing) parthenogenesis, in some cases, involves reproductive advantages against obligate sexual reproduction. However, the completion of parthenogenesis takes multiple steps without the help of males, and thus preadaptation that meets those requirements will be an important factor for the evolution of parthenogenesis. The Japanese subterranean termite, Reticulitermes speratus, is known to have the ability of parthenogenetic colony foundation, where females that failed to mate with males found colonies cooperatively with partner females and reproduce by parthenogenesis. In this study, we compared the parthenogenetic ability and the colony initiation behavior among six Reticulitermes species in Japan. All species other than R. speratus were not able to reproduce parthenogenetically. Nevertheless, females of these species without the parthenogenetic ability performed homosexual female–female colony initiation and produced eggs without fertilization. In addition, in one species without parthenogenetic reproduction, R. kanmonensis, female–female pair initiated founding behavior as quickly as a heterosexual pair. These results suggest that female–female colony initiation and virgin egg-laying are predominant characters among the genus Reticulitermes and provide a preadaptive condition for parthenogenetic colony foundation in R. speratus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号