首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

2.
This study aims to investigate the photoprotective properties of a Lomentaria hakodatensis ethanol extract (LHE) against ultraviolet B (UVB) radiation-induced cellular damage in human HaCaT keratinocytes. LHE exhibited scavenging activity against intracellular reactive oxygen species (ROS), which were generated by either hydrogen peroxide (H2O2) or UVB radiation. Moreover, LHE scavenged superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2). Furthermore, LHE exhibited UVB absorptive properties and attenuated injury to cellular components (e.g., lipids, proteins and DNA), resulting from UVB-induced oxidative stress. In addition, LHE reduced apoptosis in response to UVB, as shown by decreased DNA fragmentation and the formation of apoptotic bodies. These results suggest that LHE protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays; thereby reducing damage to biological components.  相似文献   

3.
Hydrogen peroxide (H2O2) is commonly formed in microbial habitats by either chemical oxidation processes or host defense responses. H2O2 can penetrate membranes and damage key intracellular biomolecules, including DNA and iron-dependent enzymes. Bacteria defend themselves against this H2O2 by inducing a regulon that engages multiple defensive strategies. A previous microarray study suggested that yaaA, an uncharacterized gene found in many bacteria, was induced by H2O2 in Escherichia coli as part of its OxyR regulon. Here we confirm that yaaA is a key element of the stress response to H2O2. In a catalase/peroxidase-deficient (Hpx) background, yaaA deletion mutants grew poorly, filamented extensively, and lost substantial viability when they were cultured in aerobic LB medium. The results from a thyA forward mutagenesis assay and the growth defect of the yaaA deletion in a recombination-deficient (recA56) background indicated that yaaA mutants accumulated high levels of DNA damage. The growth defect of yaaA mutants could be suppressed by either the addition of iron chelators or mutations that slowed iron import, indicating that the DNA damage was caused by the Fenton reaction. Spin-trapping experiments confirmed that Hpx yaaA cells had a higher hydroxyl radical (HO) level. Electron paramagnetic resonance spectroscopy analysis showed that the proximate cause was an unusually high level of intracellular unincorporated iron. These results demonstrate that during periods of H2O2 stress the induction of YaaA is a critical device to suppress intracellular iron levels; it thereby attenuates the Fenton reaction and the DNA damage that would otherwise result. The molecular mechanism of YaaA action remains unknown.  相似文献   

4.
Index     
Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.  相似文献   

5.
6.
BackgroundAntibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed toward the pre-antibiotic era. Antimicrobial peptides (AMPs) are a host defense component against infectious pathogens in response to innate immunity. PMAP-23, an AMP derived from porcine myeloid, possesses antibacterial activity. It is currently not clear how the antibacterial activity of PMAP-23 is manifested.MethodsThe disruptive effect of nitric oxide (NO) on the catalase activity, reactive oxygen species (ROS) production, DNA oxidation and apoptosis-like death were evaluated using the NO generation inhibitor.ResultsIn this investigation, PMAP-23 generates NO in a dose dependent manner. NO deactivated catalase and this antioxidant could not protect Escherichia coli against ROS, especially hydroxyl radical. This redox imbalance was shown to induce oxidative stress, thus leading to DNA strand break. Consequently, PMAP-23 treated E. coli cells resulted in apoptosis-like death. These physiological changes were inhibited when NO generation was inhibited. In the ΔdinF mutant, the levels of DNA strand break sharply increased and the cells were more sensitive to PMAP-23 than wild type.ConclusionOur data strongly indicates that PMAP-23 mediates apoptosis-like cell death through affecting intracellular NO homeostasis. Furthermore, our results demonstrate that DinF functioned in protection from oxidative DNA damage.General significanceThe identification of PMAP-23 antibacterial activity and mechanism provides a promising antibacterial agent, supporting the role of NO in cell death regulation.  相似文献   

7.
8.
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O2?, superoxide radicals; OH, hydroxyl radical; HO2, perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H2O2, hydrogen peroxide and 1O2, singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of 1O2 and O2?. In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O2?. The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.  相似文献   

9.
In this study, the antioxidant activities of 21 species of marine algae were assessed via an ABTS free radical scavenging assay. The Ishige okamurae extract tested herein evidenced profound free radical scavenging activity, compared to that exhibited by other marine algae extracts. Thus, I. okamurae was selected for use in further experiments, and was partitioned with different organic solvents. Profound radical scavenging activity was detected in the ethyl acetate fraction, and the active compound was identified as the carmalol derivative, diphlorethohydroxycarmalol, which evidenced higher levels of activity than that of commercial antioxidants. Moreover, the protective effects of diphlorethohydroxycarmalol against H2O2-induced cell damage were evaluated. Intracellular reactive oxygen species (ROS) were overproduced as the result of the addition of H2O2, but this ROS generation was reduced significantly after diphlorethohydroxycarmalol treatment; this corresponds to a significant enhancement of cell viability against H2O2-induced oxidative damage. The inhibitory effects of diphlorethohydroxycarmalol against cell damage were determined via comet assay and Hoechst staining assay, and diphlorethohydroxycarmalol was found to exert a positive dose-dependent effect. These results clearly indicate that the diphlorethohydroxycarmalol isolated from I. okamurae exerts profound antioxidant effects against H2O2-mediated cell damage, and treatment with this compound may be a potential therapeutic modality for the treatment or prevention of several diseases associated with oxidative stress.  相似文献   

10.
11.
The mitochondrial DNA polymerase as a target of oxidative damage   总被引:16,自引:0,他引:16       下载免费PDF全文
The mitochondrial respiratory chain is a source of reactive oxygen species (ROS) that are responsible for oxidative modification of biomolecules, including proteins. Due to its association with mitochondrial DNA, DNA polymerase γ (pol γ) is in an environment to be oxidized by hydrogen peroxide and hydroxyl radicals that may be generated in the presence of iron ions associated with DNA. We tested whether human pol γ was a possible target of ROS with H2O2 and investigated the effect on the polymerase activities and DNA binding efficiency. A 1 h treatment with 250 µM H2O2 significantly inhibited DNA polymerase activity of the p140 subunit and lowered its DNA binding efficiency. Addition of p55 to the p140 catalytic subunit prior to H2O2 treatment offered protection from oxidative inactivation. Oxidatively modified amino acid residues in pol γ  resulting from H2O2 treatment were observed in vitro as well as in vivo, in SV40-transfected human fibroblasts. Pol γ was detected as one of the major oxidized mitochondrial matrix proteins, with a detectable decline in polymerase activity. These results suggest pol γ as a target of oxidative damage, which may result in a reduction in mitochondrial DNA replication and repair capacities.  相似文献   

12.
Reactive oxygen species (ROS) have been implicated as the cause of cumulative damage to DNA, proteins and lipids that can ultimately result in cell death. A common problem when measuring oxidative DNA damage has been the introduction of modifications in the native state of the molecule by many DNA isolation methods. We circumvented this problem by employing direct PCR (DPCR) of whole cell lysates. DPCR of mouse lung fibroblasts performed better than PCRs containing template acquired by phenol/chloroform extraction or a commercially available genomic DNA isolation kit. We investigated the direct use of whole cell preparations in the polymerase chain reaction (PCR) to detect hydrogen peroxide (H2O2)-mediated DNA damage. We observed a concentration-dependent decrease in amplification efficiency of a 4.3 kb mitochondrial (mt)DNA target in H2O2-treated mouse lung fibroblasts (MLFs). At low doses the efficiency of amplification returns to control levels over 24 h. We detected no change in amplification efficiency of a plasmid control containing our mtDNA target under any of the culture conditions employed in these studies. Treatment of MLFs with the catalytic antioxidant manganese(III) meso-tetrakis(4-benzoic acid)porphyrin (MnTBAP) attenuates the effects of H2O2 exposure. When quantitated with an external standard the use of DPCR in tandem with a PCR amplification efficiency assay provides a powerful approach to assess oxidative mtDNA damage.  相似文献   

13.
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.  相似文献   

14.
The aim of this study was to investigate the protective effects of the ethanol extract of the red algae Chondracanthus tenellus (Harvey) Hommersand (CTE) on cultured human keratinocyte cell line. The cellular protection conferred by CTE was evidenced by the ability of the extract to absorb ultraviolet B (UVB; 280?C320 nm) and to scavenge the radical 1,1-diphenyl-2-picrylhydrazyl, as well as intracellular reactive oxygen species (ROS), induced by either hydrogen peroxide (H2O2) or UVB radiation. In addition, both superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4?+?H2O2) were scavenged by CTE, as confirmed using electron spin resonance spectrometry. In the human keratinocyte cell line, CTE decreased the degree of injury resulting from UVB-induced oxidative stress to lipids, proteins, and DNA. CTE-treated cells also showed a reduction in UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and less DNA fragmentation. Taken together, these results suggest that CTE confers protection on the human keratinocyte cell line against UVB-induced oxidative stress by absorbing UVB ray and scavenging ROS, thereby reducing injury to cellular constituents.  相似文献   

15.
16.
Accumulating evidence suggests that exposures to elevated levels of either endogenous estrogen or environmental estrogenic chemicals are associated with breast cancer development and progression. These natural or synthetic estrogens are known to produce reactive oxygen species (ROS) and increased ROS has been implicated in both cellular apoptosis and carcinogenesis. Though there are several studies on direct involvement of ROS in cellular apoptosis using short-term exposure model, there is no experimental evidence to directly implicate chronic exposure to ROS in increased growth and tumorigenicity of breast cancer cells. Therefore, the objective of this study was to evaluate the effects of chronic oxidative stress on growth, survival and tumorigenic potential of MCF-7 breast cancer cells. MCF-7 cells were exposed to exogenous hydrogen peroxide (H2O2) as a source of ROS at doses of 25 µM and 250 µM for acute (24 hours) and chronic period (3 months) and their effects on cell growth/survival and tumorigenic potential were evaluated. The results of cell count, MTT and cell cycle analysis showed that while acute exposure inhibits the growth of MCF-7 cells in a dose-dependent manner, the chronic exposure to H2O2-induced ROS leads to increased cell growth and survival of MCF-7 cells. This was further confirmed by gene expression analysis of cell cycle and cell survival related genes. Significant increase in number of soft agar colonies, up-regulation of pro-metastatic genes VEGF, WNT1 and CD44, whereas down-regulation of anti-metastatic gene E-Cadherin in H2O2 treated MCF-7 cells observed in this study further suggests that persistent exposure to oxidative stress increases tumorigenic and metastatic potential of MCF-7 cells. Since many chemotherapeutic drugs are known to induce their cytotoxicity by increasing ROS levels, the results of this study are also highly significant in understanding the mechanism for adaptation to ROS-induced toxicity leading to acquired chemotherapeutic resistance in breast cancer cells.  相似文献   

17.
ABSTRACT

Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.  相似文献   

18.
Copper [Cu(II)] is an ubiquitous transition and trace element in living organisms. It increases reactive oxygen species (ROS) and free-radical generation that might damage biomolecules like DNA, proteins, and lipids. Furthermore, ability of Cu(II) greatly increases in the presence of oxidants. ROS, like hydroxyl (·OH) and superoxide (·O2) radicals, alter both the structure of the DNA double helix and the nitrogen bases, resulting in mutations like the AT→GC and GC→AT transitions. Proteins, on the other hand, suffer irreversible oxidations and loss in their biological role. Thus, the aim of this investigation is to characterize, in vitro, the structural effects caused by ROS and Cu(II) on bacteriophage λ DNA or proteins using either hydrogen peroxide (H2O2) or ascorbic acid with or without Cu(II). Exposure of DNA to ROS-generating mixtures results in electrophoretic (DNA breaks), spectrophotometric (band broadening, hypochromic, hyperchromic, and bathochromic effects), and calorimetric (denaturation temperature [T d], denaturation enthalpy [ΔH], and heat capacity [C p] values) changes. As for proteins, ROS increased their thermal stability. However, the extent of the observed changes in DNA and proteins were distinct, depending on the efficiency of the systems assayed to generate ROS. The resulting effects were most evident when Cu(II) was present. In summary, these results show that the ROS, ·O2 and ·OH radicals, generated by the Cu(II) systems assayed deeply altered the chemical structure of both DNA and proteins. The physiological relevance of these structural effects should be further investigated.  相似文献   

19.
DNA damage induced by reactive oxygen species (ROS) is considered an important intermediate in the pathogenesis of human conditions such as cancer and aging. By developing an oxidative-induced DNA damage mapping version of the Ligation-mediated polymerase chain reaction (LMPCR) technique, we investigated the in vivo and in vitro frequencies of DNA base modifications caused by ROS in the human p53 and PGK1 gene. Intact human male fibroblasts were exposed to 50 mM H2O2, or purified genomic DNA was treated with 5 mM H2O2, 100 μM Ascorbate, and 50 μM, 100 μM, or 100 μM of Cu(II), Fe(III), or Cr(VI) respectively. The damage pattern generated in vivo was nearly identical to the in vitro Cu(II) or Fe(III) damage patterns; damage was non-random with guanine bases heavily damaged. Cr(VI) generated an in vitro damage pattern similar to the other metal ions, although several unique thymine positions were damaged. Also, extra nuclear sites are a major contributor of metal ions (or metal-like ligands). These data show that the local probability of H2O2-mediated DNA damage is determined by the primary DNA sequence, with chromatin structure having a limited effect. The data suggest a model in which DNA-metal ion binding domains can accommodate different metalions. LMPCR's unique aspect is a blunt-end ligation of an asymmetric double-stranded linker, permitting exponential PCR amplification. An important factor limiting the sensitivity of LMPCR is the representation of target gene DNA relative to non-targeted genes; therefore, we recently developed a method to eliminate excess non-targeted genomic DNA. Restriction enzyme-digested genomic DNA is size fractionated by Continuous Elution Electrophoresis (CEE), capturing the target sequence of interest. The amount of target DNA in the starting material for LMPCR is enriched, resulting in a stronger amplification signal. CEE provided a 24-fold increase in the signal strength attributable to strand breaks plus modified bases created by ROS in the human p53 and PGK1 genes, detected by LMPCR. We are currently taking advantage of the enhanced sensitivity of target gene-enriched LMPCR to map DNA damage induced in human breast epithelial cells exposed to non-cytotoxic concentrations of H2O2.  相似文献   

20.
During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS) to attack the pathogen, as well as formation of cell wall appositions (CWAs) to physically block pathogen penetration. A successful pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as MoHYR1. This gene (MGG_07460) encodes a glutathione peroxidase (GSHPx) domain, and its homologue in yeast was reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion mutantΔhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H2O2). Moreover, we observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to determine how this gene interacts with other (ROS) scavenging-related genes in M. oryzae, we compared expression levels of ten genes in mutant versus wild type with and without H2O2. Our results indicated that the HYR1 gene was important for allowing the fungus to tolerate H2O2 in vitro and in planta and that this ability was directly related to fungal virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号