首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
尽管大脑听皮层神经元对声音空间信息的编码已有不少的研究报道,但其编码机制并不十分清楚,相关研究在大鼠的初级听皮层也未见详细的研究报道.用神经电生理学方法在大鼠初级听皮层考察了151个听神经元的听空间反应域,分析了神经元对来自不同空间方位声刺激反应的放电数和平均首次发放潜伏期的关系.结果表明,多数(52.32%)神经元对来自对侧听空间的声刺激反应较强,表现为对侧偏好型特征,其他神经元分别归类为同侧偏好型(18.54%)、中间偏好型(18.54%)、全向型(3.31%)和复杂型(7.28%).多数神经元偏好的听空间区域的几何中心位于记录部位对侧听空间的中部和上部.绝大多数初级听皮层神经元对来自偏好听空间的声刺激反应的放电数较多、反应潜伏期较短,对来自非偏好听空间的声刺激反应的放电数较少、反应潜伏期较长,放电数与平均首次发放潜伏期呈显著负相关.在对声音空间信息的编码中,大脑初级听皮层可能综合放电数和潜伏期的信息以实现对声源方位的编码.  相似文献   

2.
3.
Poghosyan V  Ioannides AA 《Neuron》2008,58(5):802-813
A fundamental question about the neural correlates of attention concerns the earliest sensory processing stage that it can affect. We addressed this issue by recording magnetoencephalography (MEG) signals while subjects performed detection tasks, which required employment of spatial or nonspatial attention, in auditory or visual modality. Using distributed source analysis of MEG signals, we found that, contrary to previous studies that used equivalent current dipole (ECD) analysis, spatial attention enhanced the initial feedforward response in the primary visual cortex (V1) at 55-90 ms. We also found attentional modulation of the putative primary auditory cortex (A1) activity at 30-50 ms. Furthermore, we reproduced our findings using ECD modeling guided by the results of distributed source analysis and suggest a reason why earlier studies using ECD analysis failed to identify the modulation of earliest V1 activity.  相似文献   

4.
A set of impulsive transient signals has been synthesized for earphone delivery whose waveform and amplitude spectra, measured at the eardrum, mimic those of sounds arriving from a free-field source. The complete stimulus set forms a "virtual acoustic space" (VAS) for the cat. VAS stimuli are delivered via calibrated earphones sealed into the external meatus in cats under barbiturate anesthesia. Neurons recorded extracellularly in primary (AI) auditory cortex exhibit sensitivity to the direction of sound in VAS. The aggregation of effective sound directions forms a virtual space receptive field (VSRF). At about 20 dB above minimal threshold, VSRFs recorded in otherwise quiet and anechoic space fall into categories based on spatial dimension and location. The size, shape and location of VSRFs remain stable over many hours of recording and are found to be shaped by excitatory and inhibitory interactions of activity arriving from the two ears. Within the VSRF response latency and strength vary systematically with stimulus direction. In an ensemble of such neurons these functional gradients provide information about stimulus direction, which closely accounts for a human listener's spatial acuity. Raising stimulus intensity, introducing continuous background noise or presenting a conditioning stimulus all influence the extent of the VSRF but leave intact the gradient structure of the field. These and other findings suggest that such functional gradients in VSRFs of ensembles of AI neurons are instrumental in coding sound direction and robust enough to overcome interference from competing environmental sounds.  相似文献   

5.
With a contact optical system it is possible to carry out intravital studies of neurons and other structures, stained with vital dyes in reflected light in a specially prepared specimen of the cat cerebral cortex. The high-quality characteristics of the optical system used have made combined morphological and intracellular electrophysiological investigations of these neurons possible. The nature of intravital morphological changes in cortical neurons was established in response to their puncture by microelectrodes with tips with different external diameters and configurations; certain morpho-functional correlations were found in the response of pyramidal neurons to disturbance of their temperature regime.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 122–125, March–April, 1976.  相似文献   

6.
Using a voltage-sensitive styryl dye, optical recordings ofthe piriform cortex responses to bipolar electrical stimulationsof the rat lateral olfactory tract (LOT) were taken. Surgicalprocedures were performed on Wistar SPF male rats anaesthetizedwith equithesine. Anaesthesia was continued during the recording.In addition the animals were curarized and artificially ventilated.Piriform cortex was stained with RH795. Cortical fluorescencewas recorded with a 124-element photodiode array using epi-illuminationwhile electrical stimulations were delivered to the LOT. Mappingof the piriform activity indicated a very large overlap of therecorded responses. Nevertheless, some differences in locationof recorded responses were observed and seemed to correlatewith the location of the stimulation electrode on the LOT. Theresults are discussed in relation to the anatomy and histologyof the olfactory bulb projections to the piriform cortex.  相似文献   

7.
Summary A simple method for the in vivo visualization of dye filled cells by laser illumination is used to characterize neurons in situ in the segmentai ganglia of the locust and the crayfish (Fig. 1). Neuron visualization provides the structural information necessary for identification of cells during an ongoing physiological experiment (Figs. 2, 3). Sequential penetrations of soma and neuropil as well as simultaneous double neuropil penetrations of spiking and nonspiking cells are facilitated by the visual control afforded by neuron visualization (Figs. 4, 5, 6). Furthermore, neuron visualization allows the sampling of cellular properties at multiple, predetermined sites in the dendritic and axonal arbors of identified neurons (Fig. 7) and aids in establishing synaptic connectivity through double neuropil recordings (Fig. 8).  相似文献   

8.
9.
10.
In experiments on anesthetized cats, 80 neurons of the primary auditory cortex (A1) were studied. Within the examined neuronal population, 66 cells (or 82.5%) were monosensory units, i.e., they responded only to acoustic stimulations (sound clicks and tones); 8 (10.1%) neurons responded to acoustic stimulation and electrocutaneous stimulation (ECS); the rest of the units (7.4%) were either trisensory (responded also to visual stimulation) or responded only to non-acoustic stimulations. In the A1 area, neurons responding to ECS with rather short latencies (15.6–17.0 msec) were found. ECS usually suppressed the impulse neuronal responses evoked by sound clicks. It is concluded that somatosensory afferent signals cause predominantly an inhibitory effect on transmission of an acoustic afferent volley to the auditory cortex at a subcortical level; however, rare cases of excitatory convergence of acoustic and somatosensory inputs toA1 neurons were observed.  相似文献   

11.
Experiments using intracellular recording of potentials from neurons of the primary auditory cortex of cats anesthetized with pentobarbital showed that under the influence of tones of characteristic frequency for the neuron under test, or of electrical stimulation of nerve fibers of the spiral ganglion, innervating the center of the receptive field of the neuron, transient excitation of the latter is followed by the development of prolonged (20–250 msec) inhibition. The cause of this inhibition is an IPSP arising in the neuron after the action potential. On the basis of data showing a close connection between inhibition and the preceding spike it is concluded that it arises through the participation of a mechanism of recurrent inhibition. During the action of tones of uncharacteristic frequency or electrical stimulation of the peripheral part of the receptive field of the neuron, a response consisting of EPSP-IPSP arises in the neuron. This IPSP is accompanied by inhibition of spontaneous activity of the neuron and its responses to testing stimulation. It has been shown that this inhibition is lateral in its genesis. Characteristics of these two types of inhibition are given.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 194–201, March–April, 1984.  相似文献   

12.
This study examined the effect of ethanol on responses of primary somatosensory cortical neurons to AMPA. Thin (200-250 microns) brain slices were sectioned to include the primary somatosensory cortex of rats 6-15 days after birth. Visually-identified neurons were selected for whole-cell patch clamp recording and an eight-barrel drug pipet assembly was used to deliver test agents. Ethanol (5-100 mM) either positively or negatively modulated AMPA (100 microM)-induced current to varying degrees in approximately 70% of primary somatosensory cortical neurons. As revealed in layer V large pyramidal neurons, the outcome of an ethanol-induced modulation appeared to be age-dependent, the trend being one of potentiation in slices derived from younger rats (postnatal days 6-9) but one of attenuation in those derived from older animals (postnatal days 13-15). These findings indicate that ethanol at physiologically relevant concentrations modulates non-NMDA receptor-mediated responses of neurons in the rat primary somatosensory cortex.  相似文献   

13.
Unit responses in the primary auditory cortex of anesthetized cats to stationary and apparently moving stimuli resulted from a static and dynamically varying interaural delay (ITD) were recorded. The static stimuli consisted of binaurally presented tones and clicks. The dynamic stimuli were produced by in-phase and out-of-phase binaurally presented click trains with time-varying ITD. Sensitivity to ITDs was mostly seen in responses of the neurons with low characteristic frequency (below 2.8 kHz). All cells sampled with static stimuli responded to simulated motion. A motion effect could take the form of a difference in response magnitude depending on the direction of stimulus motion and a shift in the ITD-function opposite the direction of motion. The magnitude of motion effects was influenced by the position of motion trajectory relative to the ITD-function. The greatest motion effect was produced by motion crossing the ITD-function slopes.  相似文献   

14.
In locally anesthetized cats, the effects of intravenous administration of succinylcholine (SCh) in sub-paralytic dosages on the responses of single neurons in motor cortex to small dynamic muscle stretches were studied. A large transient enhancement of these cortical responses with a time course corresponding to the peripheral action of SCh on muscle spindles was observed. This finding is discussed in terms of the hypothesis that muscle spindle primary endings may activate projections to motor cortex.  相似文献   

15.
16.
Cortical stratification of neurons forming callosal projections to the primary cortical area (AI) was investigated in cats using horseradish peroxidase axonal transport techniques. The population of area AI callosal neurons was found to be composed of several groups of cells. The group comprising around 60% of all callosal neurons of this area consists of large layer III pyramidal neurons. Callosal neurons belonging to this layer have a mean perikaryon profile area of 261.8±8.2 µm2; they account for 22% of all cells found in the layer. The second group, comprising 27% of all area AI callosal neurons, was largely made up of large layer V and VI cells; these could not be classed as pyramidal neurons due to the shape of their somata and the geometry of their dendritic arborization. Perikaryon profile in these nonpyramidal neurons occupied an area of 250.3±8.4 µ2. No callosal neurons were observed in layer I. These account for 6 and 7% of total numbers of callosal neurons of area AI in layers II and IV. Callosal neurons were found to form projections to all layers of area AI in the contralateral hemisphere. Highest density of callosal fiber endings was observed in layers II and III.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 249–256, March–April, 1990.  相似文献   

17.
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.  相似文献   

18.
Previous studies have demonstrated that despite its blindness, the subterranean blind mole rat (Spalax ehrenbergi) possesses a noticeable lateral geniculate nucleus and a typical cyto-architectural occipital cortex that are reciprocally connected. These two areas, as revealed by the metabolic tracer 2-deoxyglucose, are activated by auditory stimuli. Using single unit recordings, we show that about 57% of 325 cells located within the occipital cortex of anesthetized mole rats responded to at least one of the following auditory stimuli — white noise, pure tones, clicks, and amplitude modulated tones — with the latter two being the most effective. About 85% of cells driven by either contralateral or ipsilateral stimulation also responded to binaural stimulation; about 13% responded only to binaural stimulation; and 2% were driven exclusively by contralateral stimulation. Comparing responsiveness and response strength to these three modes of stimulation revealed a contralateral predominance. Mean latency (±SD) of ipsilateral and contralateral responses were 48.5±32.6 ms and 33.5±9.4 ms, respectively. Characteristic frequencies could be divided into two distinct subgroups ranging between 80 and 125 Hz and between 2,500 and 4,400 Hz, corresponding to the most intensive spectral components of the vibratory intraspecific communication signals and airborne vocalizations.Abbreviations BMF best modulation frequency - CF characteristic frequency - 2-DG 2-deoxyglucose - dLGN dorsal lateral geniculate nucleus - IC inferior colliculus - LGN lateral geniculate nucleus - OC occipital cortex - MTF modulation transfer function - SAM sinusoidally amplitude modulation - SC superior colliculus  相似文献   

19.
20.
猫扣带回前部内脏伤害感受神经元的诱发反应   总被引:1,自引:0,他引:1  
Wu MF  Teng GX 《生理学报》2000,52(6):511-514
应用玻璃微电极细胞内电位记录技术,观察了20史猫扣带回前部461个神经元对电刺激对侧内脏大神经的诱发反应及其电生理特性,在被观察的神经元中,176个为刺激相关神经元。根据诱发反应的特性,将其分为特异性内脏伤害感受神经元(114个,64.77%)、非特异性内脏伤害感受神经元(34个,19.32%)及非内脏伤害感受神经元(28个,15.91%)。诱发反应分为兴奋性(59.46%)、抑制性(22.30%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号