首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Acute lung injury (ALI), such as that which occurs with mechanical ventilation, contributes to morbidity and mortality of critical illness. Nonetheless, in many instances, ALI resolves spontaneously through unknown mechanisms. Therefore, we hypothesized the presence of innate adaptive pathways to protect the lungs during mechanical ventilation. In this study, we used ventilator-induced lung injury as a model to identify endogenous mechanisms of lung protection. Initial in vitro studies revealed that supernatants from stretch-induced injury contained a stable factor which diminished endothelial leakage. This factor was subsequently identified as adenosine. Additional studies in vivo revealed prominent increases in pulmonary adenosine levels with mechanical ventilation. Because ectoapyrase (CD39) and ecto-5'-nucleotidase (CD73) are rate limiting for extracellular adenosine generation, we examined their contribution to ALI. In fact, both pulmonary CD39 and CD73 are induced by mechanical ventilation. Moreover, we observed pressure- and time-dependent increases in pulmonary edema and inflammation in ventilated cd39(-/-) mice. Similarly, pharmacological inhibition or targeted gene deletion of cd73 was associated with increased symptom severity of ventilator-induced ALI. Reconstitution of cd39(-/-) or cd73(-/-) mice with soluble apyrase or 5'-nucleotidase, respectively, reversed such increases. In addition, ALI was significantly attenuated and survival improved after i.p. treatment of wild-type mice with soluble apyrase or 5'-nucleotidase. Taken together, these data reveal a previously unrecognized role for CD39 and CD73 in lung protection and suggest treatment with their soluble compounds as a therapeutic strategy for noninfectious ALI.  相似文献   

3.
4.
Tumor cell invasion and metastasis are the definitive cause of mortality in breast cancer (BC). Hypoxia and pro-inflammatory cytokines upregulate the CD73 gene in the tumor microenvironment. Subsequently, CD73 triggers molecular and cellular signaling pathways by both enzymatic and nonenzymatic pathways, which finally leads to breast tumor progression and development. In this paper, we summarize current advances in the understanding of CD73-driven mechanisms that promote BC development and mortality. Furthermore, we evaluate the therapeutic potential of CD73 targeting in BC.  相似文献   

5.
We describe enhanced expression and enzymatic activity of ecto-ATPase and ecto-5'nucleotidase on CMV infected endothelial cells as compared to uninfected cells. These ectoenzymes play a major role in modulation of platelet activation and aggregation. Furthermore, adenosine has a modulatory effect upon inflammation. Addition of ATP, ADP or AMP to cultures of CMV infected or uninfected endothelial cells revealed increased turnover of AMP in CMV infected endothelial cells. In addition, the superoxide production by stimulated polymorphonuclear cells was inhibited in the presence of CMV infected endothelial cells as compared to uninfected cells, probably due to the enhanced activity of ecto-5'nucleotidase and associated to production of adenosine.  相似文献   

6.
7.
CD4+CD25+ regulatory T cells control innate immune reactivity after injury   总被引:10,自引:0,他引:10  
Major injury initiates a systemic inflammatory response that can be detrimental to the host. We have recently reported that burn injury primes innate immune cells for a progressive increase in TLR4 and TLR2 agonist-induced proinflammatory cytokine production and that this inflammatory phenotype is exaggerated in adaptive immune system-deficient (Rag1(-/-)) mice. The present study uses a series of adoptive transfer experiments to determine which adaptive immune cell type(s) has the capacity to control innate inflammatory responses after injury. We first compared the relative changes in TLR4- and TLR2-induced TNF-alpha, IL-1beta, and IL-6 production by spleen cell populations prepared from wild-type (WT), Rag1(-/-), CD4(-/-), or CD8(-/-) mice 7 days after sham or burn injury. Our findings indicated that splenocytes prepared from burn-injured CD8(-/-) mice displayed TLR-induced cytokine production levels similar to those in WT mice. In contrast, spleen cells from burn-injured CD4(-/-) mice produced cytokines at significantly higher levels, equivalent to those in Rag1(-/-) mice. Moreover, reconstitution of Rag1(-/-) or CD4(-/-) mice with WT CD4(+) T cells reduced postinjury cytokine production to WT levels. Additional separation of CD4(+) T cells into CD4(+)CD25(+) and CD4(+)CD25(-) subpopulations before their adoptive transfer into Rag1(-/-) mice showed that CD4(+)CD25(+) T cells were capable of reducing TLR-stimulated cytokine production levels to WT levels, whereas CD4(+)CD25(-) T cells had no regulatory effect. These findings suggest a previously unsuspected role for CD4(+)CD25(+) T regulatory cells in controlling host inflammatory responses after injury.  相似文献   

8.
Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment.  相似文献   

9.
The objective of this study was to examine the changes in the activity and expression of ectonucleotidase enzymes in the model of unilateral cortical stab injury (CSI) in rat. The activities of ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) and ecto 5'-nucleotidase were assessed by measuring the levels of ATP, ADP and AMP hydrolysis in the crude membrane preparations obtained from injured left cortex, right cortex, left and right caudate nucleus, whole hippocampus and cerebellum. Significant increase in NTPDase and ecto 5'-nucleotidase activities was observed in the injured cortex following CSI, whereas in other brain areas only an increase in ecto 5'-nucleotidase activity was seen. Immunohistochemical analysis performed using antibodies specific to NTPDase 1 and ecto 5'-nucleotidase demonstrated that CSI induced significant changes in enzyme expression around the injury site. Immunoreactivity patterns obtained for NTPDase 1 and ecto 5'-nucleotidase were compared with those obtained for glial fibrillary acidic protein, as a marker of astrocytes and complement receptor type 3 (OX42), as a marker of microglia. Results suggest that up-regulation of ectonucleotidase after CSI is catalyzed by cells that activate in response to injury, i.e. cells immunopositive for NTPDase 1 were predominantly microglial cells, whereas cells immunopositive for ecto 5'-nucleotidase were predominantly astrocytes.  相似文献   

10.
The ectonucleotidases CD39 and CD73 degrade immune stimulatory ATP to adenosine that inhibits T and NK cell responses via the A(2A) adenosine receptor (ADORA2A). This mechanism is used by regulatory T cells (T(reg)) that are associated with increased mortality in OvCA. Immunohistochemical staining of human OvCA tissue specimens revealed further aberrant expression of CD39 in 29/36 OvCA samples, whereas only 1/9 benign ovaries showed weak stromal CD39 expression. CD73 could be detected on 31/34 OvCA samples. While 8/9 benign ovaries also showed CD73 immunoreactivity, expression levels were lower than in tumour specimens. Infiltration by CD4(+) and CD8(+) T cells was enhanced in tumour specimens and significantly correlated with CD39 and CD73 levels on stromal, but not on tumour cells. In vitro, human OvCA cell lines SK-OV-3 and OaW42 as well as 11/15 ascites-derived primary OvCA cell cultures expressed both functional CD39 and CD73 leading to more efficient depletion of extracellular ATP and enhanced generation of adenosine as compared to activated T(reg). Functional assays using siRNAs against CD39 and CD73 or pharmacological inhibitors of CD39, CD73 and ADORA2A revealed that tumour-derived adenosine inhibits the proliferation of allogeneic human CD4(+) T cells in co-culture with OvCA cells as well as cytotoxic T cell priming and NK cell cytotoxicity against SK-OV3 or OAW42 cells. Thus, both the ectonucleotidases CD39 and CD73 and ADORA2A appear as possible targets for novel treatments in OvCA, which may not only affect the function of T(reg) but also relieve intrinsic immunosuppressive properties of tumour and stromal cells.  相似文献   

11.
Vascular smooth muscle cell (VSMC) migration and proliferation are critical steps in the pathogenesis of atherosclerosis, post-angioplasty restenosis, neointimal hyperplasia, and chronic allograft rejection. Extracellular nucleotides are known to influence both migration and proliferation of VSMC. Although it is well established that vascular endothelial Cd39/ENTPD1 regulates blood nucleotide concentrations, whether Cd39 associated with VSMC also impacts vascular wall pathology has not been investigated. The objective of this paper is to determine levels of expression of Cd39 on VSMC and functional consequences of gene deletion in vitro and in vivo. Cd39 is the major ectonucleotidase in VSMC, as shown by substantive decreases in ecto-ATPase and -ADPase activity in Cd39-null cells compared to wild type. Significant decreases in neointimal lesion formation are observed in Cd39-null mice at 21 days post arterial balloon injury. Stimulated Cd39-null VSMC have pronounced proliferative responses in vitro. However, using Transwell systems, we show that Cd39-null VSMC fail to migrate in response to ATP, UTP, and PDGF. Cd39 is the dominant ectonucleotidase expressed by VSMC. Deletion of Cd39 in mice results in decreased neointimal formation after vascular injury and is associated with impaired VSMC migration responses in vitro.  相似文献   

12.
《Biophysical journal》2022,121(2):309-318
Synapsed cells can communicate using exocytosed nucleotides like adenosine triphosphate (ATP). Ectonucleotidases localized to synaptic junctions degrade nucleotides into metabolites like adenosine monophosphate (AMP) or adenosine. Oftentimes nucleotide degradation occurs in a sequential manner, of which ATP degradation by CD39 and CD73 is a representative example. Here, CD39 first converts ATP and adenosine diphosphate (ADP) into AMP, after which AMP is dephosphorylated into adenosine by CD73. Hence, the concerted activity of CD39 and CD73 can help shape cellular responses to extracellular ATP. In a previous study, we demonstrated that coupled CD39 and CD73 activity within synapse-like junctions is strongly controlled by the enzymes' co-localization, their surface charge densities, and the electrostatic potential of the surrounding cell membranes. In this study, we demonstrate that crowders within synaptic junctions, which can include globular proteins like cytokines and membrane-bound proteins, impact coupled CD39 and CD73 ectonucleotidase activity and, in turn, the availability of intrasynapse ATP. Specifically, we developed a spatially explicit, reaction-diffusion model for the coupled conversion of ATP → AMP and AMP → adenosine in a model synaptic junction with crowders that is solved via the finite element method. Our modeling results suggest that the association rate for ATP to CD39 is strongly influenced by the density of intrasynaptic protein crowders, as increasing crowder density generally suppressed ATP association kinetics. Much of this suppression can be rationalized based on a loss of configurational entropy. The surface charges of crowders can further influence the association rate, with the surprising result that favorable crowder-nucleotide electrostatic interactions can yield CD39 association rates that are faster than crowder-free configurations. However, attractive crowder-nucleotide interactions decrease the rate and efficiency of adenosine production, which in turn increases the availability of ATP and AMP within the synapse relative to crowder-free configurations. These findings highlight how CD39 and CD73 ectonucleotidase activity, electrostatics, and crowding within synapses influence the availability of nucleotides for intercellular communication.  相似文献   

13.
CD39 is the cell surface-located prototypic member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. Biological actions of CD39 are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides. This ecto-enzymatic cascade in tandem with CD73 (ecto-5–nucleotidase) also generates adenosine and has major effects on both P2 and adenosine receptor signalling. Despite the early recognition of CD39 as a B lymphocyte activation marker, little is known of the role of CD39 in humoral or cellular immune responses. There is preliminary evidence to suggest that CD39 may impact upon antibody affinity maturation. Pericellular nucleotide/nucleoside fluxes caused by dendritic cell expressed CD39 are also involved in the recruitment, activation and polarization of naïve T cells. We have recently explored the patterns of CD39 expression and the functional role of this ecto-nucleotidase within quiescent and activated T cell subsets. Our data indicate that CD39, together with CD73, efficiently distinguishes T regulatory cells (Treg) from other resting or activated T cells in mice (and humans). Furthermore, CD39 serves as an integral component of the suppressive machinery of Treg, acting, at least in part, through the modulation of pericellular levels of adenosine. We have also shown that the coordinated regulation of CD39/CD73 expression and of the adenosine receptor A2A activates an immunoinhibitory loop that differentially regulates Th1 and Th2 responses. The in vivo relevance of this network is manifest in the phenotype of Cd39-null mice that spontaneously develop features of autoimmune diseases associated with Th1 immune deviation. These data indicate the potential of CD39 and modulated purinergic signalling in the co-ordination of immunoregulatory functions of dendritic and Treg cells. Our findings also suggest novel therapeutic strategies for immune-mediated diseases.  相似文献   

14.
15.
De novo CD44 and ligand expression at wound margins accompanies cellular proliferation and migration that effect repair of injured mucosal and vascular endothelial tissues. To determine whether CD44 could play a role in recovery from acute ischemic renal injury, we characterized its renal expression and those of two of its ligands, hyaluronic acid and osteopontin. Although no expression is detectable in nonischemic kidneys, several mRNAs for CD44 are present within 1 day after injury. CD44 mRNA is expressed in proximal tubules undergoing repair. CD44 peptide is present in basal and lateral cell membranes. Hyaluronic acid is normally expressed in the interstitium of the renal papilla only. By 1 day postischemia, hyaluronic acid can be detected, in addition, in the interstitium surrounding regenerating tubules. Osteopontin, not normally expressed in the renal proximal tubule, is expressed in regenerating tubules by 3 days after induction of acute ischemic injury. Immunoreactive osteopontin peptide continues to be localized in those tubules still undergoing repair for as long as 7 days after the injury. Our data are consistent with a role for CD44-ligand interactions in the regenerating proximal tubule participating in the process of recovery after ischemic injury.  相似文献   

16.
Ischemic preconditioning (IP) is a well-established phenomenon, and the underlying mechanisms of IP are thought to involve adaptive changes within the injured tissue. Because one of the main functions of immune cells is to harbor memory, we hypothesized that circulating immune cells could mediate IP by responding to an initial ischemia reperfusion injury (IRI) and then mediate decreased injury after a second IRI event. C57BL/6 mice underwent 30 min of bilateral renal clamping or sham operation. At 5 days after ischemia, purified leukocytes from spleen were adoptively transferred into T cell-deficient (nu/nu) mice. After 1 wk, these mice underwent 30 min of renal IRI. The nu/nu mice receiving leukocytes from ischemic wild-type mice had significantly reduced renal injury compared with nu/nu mice receiving leukocytes from sham-operated, wild-type mice. Infiltration of neutrophil and macrophage in postischemic kidney did not correlate with the protection. No difference in kidney C3d or IgG deposition was detected between groups. Given that inducible NO synthase (iNOS) has been implicated in IP, leukocytes from ischemic or sham-operated, iNOS-deficient mice were transferred into nu/nu mice. Effects similar to those of wild-type transfer of ischemic leukocytes were demonstrated; thus, iNOS was not mediating the IP effect of leukocytes. This is the first evidence that immune cells are primed after renal IRI and thereby lose the capacity to cause kidney injury during a second episode of IRI. This finding may also be relevant for elucidating the mechanisms underlying cross-talk between injured kidney and distant organs.  相似文献   

17.
AIM:To identify circulating CD90 + CD73 + CD45 cells and evaluate their in vitro proliferating abilities.METHODS:Patients with cirrhosis(n=43),and healthy volunteers(n=40)were recruited to the study.Mononuclear cells were isolated and cultured from the peripheral blood of controls and cirrhosis patients.Fibroblast-like cells that appeared in cultures were analyzed for morphological features,enumerated by flow cytometry and confirmed by immunocytochemistry(ICC).Colony forming efficiency(CFE)of these cells was assessed and expressed as a percentage.RESULTS:In comparison to healthy volunteers,cells obtained from cirrhotic patients showed a significantincrease(P<0.001)in the percentage of CD90+CD73+ CD45 cells in culture.Cultured cells also showed 10 fold increases in CFE.Flow cytometry and ICC confirmed that the proliferating cells expressed CD90 + CD73 + in the cultures from cirrhosis patients.CONCLUSION:These results indicate the presence of circulating CD90 + CD73 + CD45 cells in patients with liver cirrhosis that have the potential to proliferate at a higher rate.  相似文献   

18.
MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions.  相似文献   

19.
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase‐1 and CD73/ecto‐5′‐nucleotidase are cell‐surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP‐driven proinflammatory environment to an anti‐inflammatory milieu induced by adenosine. The CD39–CD73–adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39–CD73–adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39–CD73–adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.  相似文献   

20.
S Mujovi? 《Acta anatomica》1984,118(3):181-186
The juxtaglomerular (JG) complex was studied at different times after 90 min of warm kidney ischemia: 2 h, 24 h, 3 days, 10 and 30 days following the ischemia. The ischemic injury was performed on the left kidney, under two experimental conditions: with and without previous nephrectomy of the contralateral nonischemic kidney. The activity of the JG complex was evaluated by assessing the JG index and by determination of plasma renin activity. Results show that, under given experimental conditions, fate of the particular JG complex depends on the fate of its own nephron. In the presence of the contralateral intact kidney most nephrons of the ischemic kidney underwent gradual degeneration and their JG complexes degenerated too. When ischemic kidney was the sole kidney, the majority of nephron units regenerated and their JG complexes recovered both morphologically and functionally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号