首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current biology : CB》2022,32(5):1026-1037.e4
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
  相似文献   

2.
Dopaminergic neurotransmission in the nucleus accumbens is important for various reward‐related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague–Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus‐mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N‐methyl‐d ‐aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal‐nucleus accumbens communication, in part through changes in glutamate receptor composition.

  相似文献   


3.
The closely related δ and ε isoforms of the serine/threonine protein kinase casein kinase 1 (Csnk1) have been implicated in the generation of psychostimulant-induced behaviors. In this study, we show that Csnk1δ/ε produces its effects on behavior by acting on the Darpp-32-PP1 signaling pathway to regulate AMPA receptor phosphorylation in the nucleus accumbens (NAcc). Inhibiting Csnk1δ/ε in the NAcc with the selective inhibitor PF-670462 blocks amphetamine induced locomotion and its ability to increase phosphorylation of Darpp-32 at S137 and T34, decrease PP1 activity and increase phosphorylation of the AMPA receptor subunit at S845. Consistent with these findings, preventing GluR1 phosphorylation with the alanine mutant GluR1(S845A) reduces glutamate-evoked currents in cultured medium spiny neurons and blocks the locomotor activity produced by NAcc amphetamine. Thus, Csnk1 enables the locomotor and likely the incentive motivational effects of amphetamine by regulating Darrp-32-PP1-GlurR1(S845) signaling in the NAcc. As such, Csnk1 may be a critical target for intervention in the treatment of drug use disorders.  相似文献   

4.
《Cell reports》2023,42(2):112069
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

5.
Adenosine A1 receptor (A1) protein and mRNA is increased in the nucleus accumbens following repeated cocaine treatment. In spite of this protein up-regulation, A1 agonist-stimulated [35S]GTPgammaS binding was attenuated in accumbens homogenates of rats withdrawn for 3 weeks from 1 week of daily cocaine injections. Cellular subfractionation revealed that the discrepancy between total A1 protein and G protein coupling resulted from a smaller proportion of receptors in the plasma membrane. The decrease in functional receptor in the plasma membrane was further indicated by diminished formation of heteromeric receptor complex consisting of A1 and dopamine D1A receptors. To explore the functional significance of the altered distribution of A1 receptors, at 3 weeks after discontinuing repeated cocaine or saline, animals were injected with cocaine and 45 min later the subcellular distribution of A1 receptors quantified. Whereas a cocaine challenge in repeated saline-treated animals induced a marked increase in membrane localization of the A1 receptor, the relative distribution of receptors in repeated cocaine rats was not affected by acute cocaine. These data suggest that the sorting and recycling of A1 receptors is dysregulated in the nucleus accumbens as the consequence of repeated cocaine administration.  相似文献   

6.
Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors.  相似文献   

7.
NMDA receptors (NMDARs) play a pivotal role in the regulation of neuronal communication and synaptic function in the central nervous system. The subunit composition and compartmental localization of NMDARs in neurons affect channel activity and downstream signaling. This review discusses the distinct NMDAR subtypes and their function at synaptic, perisynaptic, and extrasynaptic sites of excitatory and inhibitory neurons. Many neurons express more than one of the modulatory NR2 subunits that participate in the formation of di- and/or triheteromeric channel assemblies (e.g., NR1/NR2A, NR1/NR2B, and/or NR1/NR2A/NR2B). Depending on the subunit composition and presence or absence of intracellular binding partners along the postsynaptic membrane, these NMDAR subtypes are allocated to distinct synaptic inputs converging onto a neuron or are distributed differentially among synaptic or extrasynaptic sites. These sites can carry NR2A and NR2B subunits, supporting the hypothesis that the spatial distribution of scaffolding and signaling complexes critically determines the full spectrum of NMDAR signaling.The author thanks the Deutsche Forschungsgemeinschaft for financial support (Ko 1064/5).  相似文献   

8.
Recent evidence suggests that modulation of dopaminergic transmission alters striatal levels of extracellular adenosine. The present study used reverse microdialysis of the selective dopamine D2 receptor antagonist raclopride to investigate whether a blockade of dopamine D2 receptors modifies extracellular adenosine concentrations in the nucleus accumbens. Results reveal that perfusion of raclopride produced an increase of dialysate adenosine which was significant with a high (10 mM) and intermediate (1 mM) drug concentration, but not with lower drug concentrations (10 and 100 μM). Thus, the present study demonstrates that a selective blockade of dopamine D2 receptors in the nucleus accumbens produced a pronounced increase of extracellular adenosine. The cellular mechanisms underlying this effect are yet unknown. It is suggested that the increase of extracellular adenosine might be related to a homeostatic modulatory mechanism proposed to be a key function of adenosine in response to neuronal metabolic challenges.  相似文献   

9.
The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.  相似文献   

10.
L Hernandez  B G Hoebel 《Life sciences》1988,42(18):1705-1712
Dopamine was measured by microdialysis in the nucleus accumbens of freely moving rats while they experienced rewarding food, brain stimulation and drugs. Extracellular dopamine increased 37% when the animals pressed a lever for food reward. Electrical stimulation of a lateral hypothalamic feeding-reward (self-stimulation) site caused a similar increase in dopamine, with or without food. At the site in the nucleus accumbens where rats will administer amphetamine to themselves, injections of amphetamine or cocaine increased extracellular dopamine five-fold. Thus amphetamine and cocaine increase dopamine in a behavior reinforcement system which is normally activated by eating. Conversely, the release of dopamine by eating could be a factor in addiction to food.  相似文献   

11.
Repeated exposure to drugs of abuse causes time-dependent neuroadaptive changes in the mesocorticolimbic system of the brain that are considered to underlie the expression of major behavioral characteristics of drug addiction. We used a 2-D gel-based proteomics approach to examine morphine-induced temporal changes in protein expression and/or PTM in the nucleus accumbens (NAc) of morphine-sensitized rats. Rats were pretreated with saline [1 mL/kg subcutaneously (s.c.)] or morphine (10 mg/kg, s.c.) once daily for 14 days and the animals were decapitated 1 day later. The NAc was extracted and proteins resolved by 2-DE. Several protein functional groups were found to be regulated in the morphine-treated group, representing cytoskeletal proteins, proteins involved in neurotransmission, enzymes involved in energy metabolism and protein degradation, and a protein that regulates translation.  相似文献   

12.
Recent technical developments, including antigen-retrieval and electron microscopic immunogold methods, are making it possible to determine some of the basic principles governing the subcellular distribution of ionotropic glutamate receptors. Distinct AMPA and NMDA receptor subtypes are selectively targeted to functionally different synapses of a single cell, resulting in an input-selective fine-tuning and regulation of the postsynaptic responses. The amount, density and variability of AMPA receptors at a given glutamatergic synapse is governed by both pre- and postsynaptic factors, resulting in functionally distinct glutamatergic connections that display characteristic patterns of receptor expression.  相似文献   

13.
Narita M  Kato H  Miyoshi K  Aoki T  Yajima Y  Suzuki T 《Life sciences》2005,77(18):2207-2220
A growing body of evidence indicates that the mesolimbic dopaminergic (DAergic) pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (N.Acc.) play a critical role in the initiation of psychological dependence on morphine. As well as DAergic system, the involvement of non-DAergic neurotransmitter and neuromodulator systems in rewarding effects induced by morphine has been recently documented. We previously demonstrated that the morphine-induced rewarding effect was dramatically suppressed by co-treatment with NMDA receptor antagonists, such as dizocilpine (MK-801), ketamine and ifenprodil. Therefore, we propose here that inhibiting the N-methyl-D-aspartate (NMDA) receptor and its associated protein kinase in the N.Acc. is useful for the treatment for psychological dependence on morphine. The following review provides a summary of recent our findings regarding the role of NMDA receptor and its associated protein kinase in the development of psychological dependence on morphine.  相似文献   

14.
Regional distribution of catecholamines in nucleus accumbens of the rabbit   总被引:1,自引:1,他引:0  
Abstract: The nucleus accumbens is an important telencephalic region, which is the target limbic and mesolimbic pathways. Because of an ongoing physiological study of the effects of dopamine, we wanted to determine regional differences of dopamine and norepinephrine concentrations in the nucleus. As determined by radioenzymatic assays, dopamine levels were not significantly different in the anterior-posterior dimension, averaging approximately 187 ng dopamine/mg protein. Substantial amounts of norepinephrine were found throughout the nucleus, but the levels were significantly higher in the caudal portions of the nucleus, being approximately 4.5 times higher than in the anterior portions.  相似文献   

15.
Monoamine concentrations were low in the rostral area of the nucleus accumbens. Their distributions were not identical. Differences were observed in the medial area. DA concentrations were high in both medial and caudal areas. Noradrenaline (NA) and serotonin (5-HT) concentrations were considerably lower than the dopamine (DA) concentration. The NA concentration was highest in the caudal area of the nucleus accumbens and the (5-HT) concentration was highest in the ventrocaudal area. There was a rostrocaudal decrease in the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and 5-hydroxyindole-3-acetic acid (5-HIAA)/5-HT ratios. Uptake of [3H]DA and [14C]choline was lowest in the rostral area. The K+-stimulated release of [14C]acetylcholine (ACh) was also lowest rostrally, but there was no rostrocaudal difference in the K+-stimulated release of [3H]DA. These results provide further evidence of the heterogeneity of the nucleus accumbens.  相似文献   

16.
Naleid AM  Grace MK  Cummings DE  Levine AS 《Peptides》2005,26(11):2274-2279
Ghrelin, a powerful orexigenic peptide released from the gut, stimulates feeding when injected centrally and has thus far been implicated in regulation of metabolic, rather than hedonic, feeding behavior. Although ghrelin's effects are partially mediated at the hypothalamic arcuate nucleus, via activation of neurons that co-express neuropeptide Y and agouti-related protein (NPY/Agrp neurons), the ghrelin receptor is expressed also in other brain sites. One of these is the ventral tegmental area (VTA), a primary node of the mesolimbic reward pathway, which sends dopaminergic projections to the nucleus accumbens (Acb), among other sites. We injected saline or three doses of ghrelin (0, 0.003, 0.03, or 0.3 nmol) into the VTA or Acb of rats. We found a robust feeding response with VTA injection of ghrelin, and a more moderate response with Acb injection. Because opioids modulate feeding in the VTA and Acb, we hypothesized that ghrelin's effects in one site were dependent on opioid signaling in the opposite site. The general opioid antagonist, naltrexone (NTX), injected into the Acb did not affect feeding elicited by ghrelin injection into the VTA, and NTX in the VTA did not affect feeding elicited by ghrelin injected into the Acb. These results suggest interaction of a metabolic factor with the reward system in feeding behavior, indicating that hedonic responses can be modulated by homeostatic factors.  相似文献   

17.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

18.
19.
20.
Sexual experience, like repeated drug use, produces long-term changes including sensitization in the nucleus accumbens and dorsal striatum. To better understand the molecular mechanisms underlying the neuroadaptations following sexual experience, we employed a DNA microarray approach to identify genes differentially expressed between sexually experienced and sexually naive female hamsters within the nucleus accumbens and dorsal striatum. For 6 weeks, a stimulus male was placed in the home cage of one-half of the hormonally primed, ovariectomized female hamsters. On the seventh week, the two experimental groups were subdivided, with one half paired with a stimulus male. In comparison with sexually naive animals, sexually experienced hamsters receiving a stimulus male on week 7 exhibited an increase in a large number of genes. Conversely, sexually experienced female hamsters not receiving a stimulus male on week 7 exhibited a reduction in the expression of many genes. For directional changes and the categories of genes regulated by the experimental conditions, data were consistent across the nucleus accumbens and dorsal striatum. However, the specific genes exhibiting changes in expression were disparate. These experiments, among the first to profile genes regulated by female sexual behavior, will provide insight into the mechanisms by which both motivated behaviors and drugs of abuse induce long-term changes in the mesolimbic and nigrostriatal dopamine pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号