首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that Fructus Ligustri Lucidi (FLL), a promising traditional Chinese medicine, can inhibit the growth of tumors. However, the effective component and molecular mechanism of FLL act to inhibit tumor proliferation are unclear. In this study, we demonstrated that oleanolic acid (OA), a principal chemical component of FLL, inhibited the proliferation of human leukemia HL60 cells in culture. MTT assay showed that treatment of HL60 cells with FLL crude extracts or OA dramatically blocked the growth of target tumor cell in a time- and dose-dependent manner. Morphological changes of the nuclei and DNA fragmentation showed that apoptotic cell death occurred in the HL60 cells after treating with FLL extracts (20 mg/ml) or OA (3.65×10^-2 mg/ml). Furthermore, flow cytometry assay showed that treatment of HL60 cells with FLL or OA caused an increased accumulation of G1 and sub-G1 subpopulations. Western blot analysis showed that caspase-9 and caspase-3 were activated, accompanied by the cleavage of poly (ADP-ribose) polymerase (PARP) in the target cells during FLL- or OA-induced apoptosis, These results suggest that OA acts as the effective component of FLL by exerting its cytotoxicity towards target tumor cells through activation of caspases and cleavage of PARP.  相似文献   

2.
Exposure of the various human myeloid leukemic cell lines (HL60 and RDFD) to various compounds results in marked differentiation of the cells. This differentiation is associated with a marked increase in both basal and NaF-stimulated adenylate cyclase (AC) activity. The increase in AC activity occurs regardless of the differentiation inducer one has utilized (retinoic acid (RA), dimethyl formamide (DMF), hypoxanthine (HPX) or actinomycin D (actD) and is correlated with this process, as a variant of the HL60 cell (HL60-Blast) that does not differentiate upon exposure to the various inducers does not demonstrate this increase in AC activity. In addition, the differentiation process is associated with a rapid increase in intracellular cAMP within hours of adding the inducer, followed by a gradual decrease.  相似文献   

3.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

4.
P-selectin on platelets and endothelial cells and E-selectin on endothelial cells are leukocyte receptors that recognize lineage-specific carbohydrates on neutrophils and monocytes. The proposed ligands for these receptors contain the Le(x) core and sialic acid. Since other investigators have shown that both E-selectin and P-selectin bind to sialylated Le(x), we evaluated whether E-selectin and P-selectin recognize the same counter-receptor on leukocytes. The interaction of HL60 cells with Chinese hamster ovary (CHO) cells expressing P-selectin or E-selectin was studied. To determine whether a protein component is required in addition to sialyl Le(x) for either P-selectin or E-selectin recognition, HL60 cells or neutrophils were digested with proteases, including chymotrypsin, elastase, proteinase Glu-C, ficin, papain, or thermolysin. Cells treated with these proteases bound E-selectin but not P-selectin. Fucosidase or neuraminidase treatment of HL60 cells markedly decreased binding to both E-selectin- and P-selectin-expressing CHO cells. Growth of HL60 cells in tunicamycin inhibited the ability of these cells to support P-selectin-mediated binding and, to a lesser extent, E-selectin-mediated binding. Purified P-selectin inhibited CHO:P-selectin binding to HL60 cells, but incompletely inhibited CHO:E-selectin binding to HL60 cells. However, purified soluble E-selectin inhibited CHO:P-selectin and CHO:E-selectin binding to HL60 cells equivalently and completely. COS cells, unable to bind to E-selectin or P-selectin, bound E-selectin but not P-selectin upon transfection with alpha-1,3-fucosyltransferase or alpha-1,3/1,4-fucosyltransferase. Similarly, LEC 11 cells expressing sialyl Le(x) bound E-selectin- but not P-selectin-expressing CHO cells. Sambucus nigra lectin, specific for the sialyl-2,6 beta Gal/GalNAc linkage, inhibited P-selectin but not E-selectin binding to HL60 cells. Although sialic acid and Le(x) are components of the P-selectin ligand and the E-selectin ligand, these results indicate that the ligands are related, having overlapping specificities, but are structurally distinct. A protein component containing sialyl Le(x) in proximity to sialyl-2,6 beta Gal structures on the P-selectin ligand may contribute to its specificity for P-selectin.  相似文献   

5.
6.
7.
8.
9.
Propyl gallate (PG), widely used as an antioxidant in foods, is carcinogenic to mice and rats. PG increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in human leukemia cell line HL-60, but not in HP100, which is hydrogen peroxide (H2O2)-resistant cell line derived from HL-60. Although PG induced no or little damage to 32P-5'-end-labeled DNA fragments obtained from genes that are relevant to human cancer, DNA damage was observed with treatment of esterase. HPLC analysis of the products generated from PG incubated with esterase revealed that PG converted into gallic acid (GA). GA induced DNA damage in a dose-dependent manner in the presence of Fe(III)EDTA or Cu(II). In the presence of Fe(III) complex such as Fe(III)EDTA or Fe(III)ADP, GA caused DNA damage at every nucleotide. Fe(III) complex-mediated DNA damage by GA was inhibited by free hydroxy radical (*OH) scavengers, catalase and an iron chelating agent. These results suggested that the Fe(III) complex-mediated DNA damage caused by GA is mainly due to *OH generated via the Fenton reaction. In the presence of Cu(II), DNA damage induced by GA occurred at thymine and cytosine. Although *OH scavengers did not prevent the DNA damage, methional inhibited the DNA damage. Cu(II)-mediated DNA damage was inhibited by catalase and a Cu(I) chelator. These results indicated that reactive oxygen species formed by the interaction of Cu(I) and H2O2 participates in the DNA damage. GA increased 8-oxodG content in calf thymus DNA in the presence of Cu(II), Fe(III)EDTA or Fe(III)ADP. This study suggested that metal-mediated DNA damage caused by GA plays an important role in the carcinogenicity of PG.  相似文献   

10.
Among the lipophilic extracts of seven traditional edible mushrooms, the acetone extract of Sarcodon aspratus markedly inhibited the growth of HL60 human leukemia cells and induced apoptosis after 24 h incubation. The major active component was identified as ergosterol peroxide by NMR and ESI-MS analysis. Ergosterol peroxide completely inhibited growth and induced apoptosis of HL60 cells at a concentration of 25 microM.  相似文献   

11.
Protein phosphatases are signalling molecules that regulate a variety of fundamental cellular processes including cell growth, metabolism and apoptosis. The aim of this work was to correlate the cytotoxicity of pervanadate and okadaic acid on HL60 cells and their effect on the phosphatase obtained from these cells. The cytotoxicity of these protein phosphatase inhibitors was evaluated on HL60 cells using phosphatase activity, protein quantification and MTT reduction as indices. The major phosphatase presents in the cellular extract showed high activity (80%) and affinity (Km = 0.08 mM) to tyrosine phosphate in relation to p-nitrophenyl phosphate (pNPP)-(Km = 0.51 mM). Total phosphatase (pNPP) was inhibited in the presence of 10 mM vanadate (98%), 200 microM pervanadate (95%) and 100 microM p-chloromercuribenzoate (80%) but okadaic acid caused a slight increase in enzyme activity (25%). When the HL60 cells were treated with the phosphatase inhibitors (pervanadate and okadaic acid) for 24hours, only 20% residual activity was observed in presence of 200 microM pervanadate, whereas in the presence of okadaic acid this inhibitory effect was not observed. However, in respect to mitochondrial function, cell viability decreased about 80% in the presence of 100 nM okadaic acid. The total protein content was decreased 25% when the cells were treated with 100 nM okadaic acid in combination with 200 microM pervanadate. Our results suggest that both phosphatase inhibitors presented different mechanisms of action on HL60 cells. However, their effect on the cell redox status have to be considered.  相似文献   

12.
Seahorse, Hippocampus kuda (SH) a marine teleost fish, is well known not only for its special medicinal composition and used as one of the most famous and expensive materials of traditional Chinese medicine. It was extracted with water (SHW), methanol (SHM), and ethanol (SHE), respectively and evaluated by various antioxidant assays. The including reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging, superoxide anion radical scavenging, alkyl radical scavenging, and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2′,7′-dichlorofluorescin diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on mouse macrophages, RAW264.7 cell and inhibited myeloperoxidase (MPO) activity in human myeloid, HL60 cells, respectively. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. Among SHM exhibited the highest antioxidant activity in linoleic acid system, effective reducing power, DPPH radical scavenging, hydroxyl radical scavenging, superoxide radical scavenging, alkyl radical scavenging, inhibitory intracellular ROS, and inhibited MPO activity. Furthermore, MTT assay showed no cytotoxicity on mouse macrophages cell (RAW264.7) and human cell lines (MRC-5, HL60, U937). This antioxidant property depends on concentration and increasing with increased amount of extracts. The results obtained in the present study indicated that the see horse (Hippocampus kuda Bleeker) is a potential source of natural antioxidant.  相似文献   

13.
The sensitivity of normal diploid Syrian hamster embryo (SHE) cells to apoptosis was tested after treatment with the topoisomerase inhibitors camptothecin and etoposide and after serum withdrawal. Programmed cell death (PCD) was identified through morphological, biochemical, and molecular changes and compared with that of HL60 cell line. The results showed that topoisomerase inhibitors, which were shown to be potent PCD inducers in the HL60 cell line, induced a weaker apoptotic response in SHE cells than after growth factor deprivation. In addition, serum-free medium, which rapidly induced apoptosis in SHE cells, did not affect the HL60 cell line. In both cell types, PCD was expressed by condensed chromatin, fragmented nuclei, and DNA laddering on electrophoretic gels, an indisputable sign of apoptosis. In apoptotic HL60 cells, the cleavage of 113-kDa poly(ADP-ribose)polymerase (PARP) resulted in the so-called apoptotic 89-kDa fragment and was associated with increased caspase-3 activity. In apoptotic SHE cells, PARP degraded early but the degradation profile was not characterized by the appearance of an 89-kDa fragment. Moreover, no activation of caspase-3 was noted. ZnCl(2), which is known to prevent protease activity responsible for apoptosis features, inhibited PARP cleavage and nuclear modifications induced by apoptotic stimuli in both cell types, but with a higher sensitivity in SHE cells. Apoptosis induced by serum deprivation was linked with c-myc negative regulation in SHE cells, but not with p53 protein accumulation, while topoisomerase inhibitors led to p53 stabilization without any change in c-myc expression. Serum-free medium and topoisomerase inhibitors did not modify c-myc expression in the HL60 cell line. The overall results demonstrated that apoptosis, which is a carefully regulated process of cell death, may proceed through mechanisms varying according to cell type or apoptosis inducer. In addition, markers which are generally considered hallmarks of apoptosis may fail to appear in some cell types.  相似文献   

14.
槲皮素对完整HL┐60细胞中肌醇磷脂转换的抑制作用康铁邦梁念慈(广东医学院医用生化研究所,湛江524023)肌醇磷脂信使系统在生物信号的跨膜传递方面起重要作用,并与细胞增殖及肿瘤形成有密切联系[1~5],有报道:肿瘤细胞或组织中磷脂酰肌醇4-激酶(P...  相似文献   

15.
We studied the role of proteases in apoptosis using a cell-free system prepared from a human leukemia cell line. HL60 cells are p53 null and extremely sensitive to a variety of apoptotic stimuli including DNA damage induced by the topoisomerase I inhibitor, camptothecin. We measured DNA fragmentation induced in isolated nuclei by cytosolic extracts using a filter elution assay. Cytosol from camptothecin-treated HL60 cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This fragmentation was suppressed by serine protease inhibitors. Serine proteases (trypsin, endoproteinase Glu-C, chymotrypsin A, and proteinase K) and papain by themselves induced DNA fragmentation in naive nuclei. This effect was enhanced in the presence of cytosol from untreated cells. Cysteine protease inhibitors (E-64, leupeptin, Ac-YVAD-CHO [ICE inhibitor]) did not affect camptothecin-induced DNA fragmentation. The apopain/Yama inhibitor, Ac-DEVD-CHO, and the proteasome inhibitor, MG-132, were also inactive both in the cell-free system and in whole cells. Interleukin-1β converting enzyme (ICE) or human immunodeficiency virus protease failed to induce DNA fragmentation in naive nuclei. Together, these results suggest that DNA damage activates serine protease(s) which in turn activate(s) nuclear endonuclease(s) during apoptosis in HL60 cells.  相似文献   

16.
The tumor suppressor Chk2 kinase plays crucial roles in regulating cell-cycle checkpoints and apoptosis following DNA damage. We investigated the expression levels of the genes encoding Chk2 and several cell-cycle regulators in nine cell lines from lymphoid malignancies, including three Hodgkin's lymphoma (HL) lines. We found that all HL cell lines exhibited a drastic reduction in Chk2 expression without any apparent mutation of the Chk2 gene. However, expression of Chk2 in HL cells was restored following treatment with the histone deacetylase inhibitors trichostatin A (TsA) and sodium butyrate (SB), or with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5Aza-dC). Chromatin-immunoprecipitation (Chip) assays revealed that treatment of HL cells with TsA, SB or 5Aza-dC resulted in increased levels of acetylated histones H3 and H4, and decreased levels of dimethylated H3 lysine 9 at the Chk2 promoter. These results indicate that expression of the Chk2 gene is downregulated in HL cells via epigenetic mechanisms.  相似文献   

17.
18.
We have investigated the regulation of DNA synthesis in the heterokaryons of HL60 human myelomonocytic leukemia cells and NIH3T3 mouse fibroblasts to examine if the differentiated leukemia cells contained a replication inhibiting activity. Cell fusions were performed either by exposing a suspension of mixed cells to an electric pulse or by the polyethylene glycol method. To identify the origin of the nuclei in a heterokaryon, one set of partner cells was prelabeled with [3H]thymidine before fusion. DNA synthetic activity after fusion was then revealed immunohistochemically by bromodeoxyuridine incorporation. DNA synthesis in the nuclei of 3T3 was inhibited in the heterokaryons of 3T3 and in either one of the two differentiated forms of HL60, i.e., the macrophage-like or the granulocyte-like. The result supports that a negative regulator of DNA synthesis exists in the differentiated HL60. Surprisingly, we have also found that DNA synthesis was inhibited in the nuclei of both 3T3 and nondifferentiated, proliferating HL60 when these two cells were fused. When unfused, proliferating cells were eliminated with cytosine arabinoside; these nonreplicating heterokaryons survived for at least 5 days, and 15% of them showed alpha-naphthylacetate esterase activity, a trait of the macrophage differentiation. The blockage of DNA synthesis in both partner nuclei was also observed in the heterokaryons of NIH3T3 cells and nondifferentiated human promonocytic leukemia cells U937, and in nondifferentiated HL60 and human diploid fibroblasts WI38. However, this effect was not found in the heterokaryons of NIH3T3 cells and human B lymphoma WI-729-HF2 cells. This is the first demonstration of the inhibition of DNA synthesis upon fusion of two proliferating cells.  相似文献   

19.
beta-Protein kinase (PKC) is essential for ligand-initiated assembly of the NADPH oxidase for generation of superoxide anion (O(2)). Neutrophils and neutrophilic HL60 cells contain both betaI and betaII-PKC, isotypes that are derived by alternate splicing. betaI-PKC-positive and betaI-PKC null HL60 cells generated equivalent amounts of O(2) in response to fMet-Leu-Phe and phorbol myristate acetate. However, antisense depletion of betaII-PKC from betaI-PKC null cells inhibited ligand-initiated O(2) generation. fMet-Leu-Phe triggered association of a cytosolic NADPH oxidase component, p47(phox), with betaII-PKC but not with RACK1, a binding protein for betaII-PKC. Thus, RACK1 was not a component of the signaling complex for NADPH oxidase assembly. Inhibition of beta-PKC/RACK1 association by an inhibitory peptide or by antisense depletion of RACK1 enhanced O(2) generation. Therefore, betaII-PKC but not betaI-PKC is essential for activation of O(2) generation and plays a positive role in signaling for NADPH oxidase activation in association with p47(phox). In contrast, RACK1 is involved in negative signaling for O(2) generation. RACK1 binds to betaII-PKC but not with the p47(phox).betaII-PKC complex. RACK1 may divert betaII-PKC to other signaling pathways requiring beta-PKC for signal transduction. Alternatively, RACK1 may sequester betaII-PKC to down-regulate O(2) generation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号