首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.

Background

α-Thalassemia (α-thal) is a genetic disorder caused by the substitution of single amino acid or large deletions in the HBA1 and/or HBA2 genes.

Method

Using modern bioinformatics tools as a systematic in-silico approach to predict the deleterious SNPs in the HBA1 gene and its significant pathogenic impact on the functions and structure of HBA1 protein was predicted.

Results and Discussion

A total of 389 SNPs in HBA1 were retrieved from dbSNP database, which includes: 201 non-coding synonymous (nsSNPs), 43 human active SNPs, 16 intronic SNPs, 11 mRNA 3′ UTR SNPs, 9 coding synonymous SNPs, 9 5′ UTR SNPs and other types. Structural homology-based method (PolyPhen) and sequence homology-based tool (SIFT), SNPs&Go, PROVEAN and PANTHER revealed that 2.4% of the nsSNPs are pathogenic.

Conclusions

A total of 5 nsSNPs (G60V, K17M, K17T, L92F and W15R) were predicted to be responsible for the structural and functional modifications of HBA1 protein. It is evident from the deep comprehensive in-silico analysis that, two nsSNPs such as G60Vand W15R in HBA1 are highly deleterious. These “2 pathogenic nsSNPs” can be considered for wet-lab confirmatory analysis.  相似文献   

2.

Background

In this study, instead of current biochemical methods, the effects of deleterious amino acid substitutions in F8 and F9 gene upon protein structure and function were assayed by means of computational methods and information from the databases. Deleterious substitutions of F8 and F9 are responsible for Haemophilia A and Haemophilia B which is the most common genetic disease of coagulation disorders in blood. Yet, distinguishing deleterious variants of F8 and F9 from the massive amount of nonfunctional variants that occur within a single genome is a significant challenge.

Methods

We performed an in silico analysis of deleterious mutations and their protein structure changes in order to analyze the correlation between mutation and disease. Deleterious nsSNPs were categorized based on empirical based and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for analysis of protein structure stability.

Results

Out of 510 nsSNPs in F8, 378 nsSNPs (74%) were predicted to be ''intolerant'' by SIFT, 371 nsSNPs (73%) were predicted to be ''damaging'' by PolyPhen and 445 nsSNPs (87%) as ''less stable'' by I-Mutant2.0. In F9, 129 nsSNPs (78%) were predicted to be intolerant by SIFT, 131 nsSNPs (79%) were predicted to be damaging by PolyPhen and 150 nsSNPs (90%) as less stable by I-Mutant2.0. Overall, we found that I-Mutant which emphasizes support vector machine based method outperformed SIFT and PolyPhen in prediction of deleterious nsSNPs in both F8 and F9.

Conclusions

The models built in this work would be appropriate for predicting the deleterious amino acid substitutions and their functions in gene regulation which would be useful for further genotype-phenotype researches as well as the pharmacogenetics studies. These in silico tools, despite being helpful in providing information about the nature of mutations, may also function as a first-pass filter to determine the substitutions worth pursuing for further experimental research in other coagulation disorder causing genes.  相似文献   

3.

Background

Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA.

Principal Findings

In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis.

Significance

Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis.  相似文献   

4.

Background

Although inherited breast cancer has been associated with germline mutations in genes that are functionally involved in the DNA homologous recombination repair (HRR) pathway, including BRCA1, BRCA2, TP53, ATM, BRIP1, CHEK2 and PALB2, about 70% of breast cancer heritability remains unexplained. Because of their critical functions in maintaining genome integrity and already well-established associations with breast cancer susceptibility, it is likely that additional genes involved in the HRR pathway harbor sequence variants associated with increased risk of breast cancer. RAD51 plays a central biological function in DNA repair and despite the fact that rare, likely dysfunctional variants in three of its five paralogs, RAD51C, RAD51D, and XRCC2, have been associated with breast and/or ovarian cancer risk, no population-based case-control mutation screening data are available for the RAD51 gene. We thus postulated that RAD51 could harbor rare germline mutations that confer increased risk of breast cancer.

Methodology/Principal Findings

We screened the coding exons and proximal splice junction regions of the gene for germline sequence variation in 1,330 early-onset breast cancer cases and 1,123 controls from the Breast Cancer Family Registry, using the same population-based sampling and analytical strategy that we developed for assessment of rare sequence variants in ATM and CHEK2. In total, 12 distinct very rare or private variants were characterized in RAD51, with 10 cases (0.75%) and 9 controls (0.80%) carrying such a variant. Variants were either likely neutral missense substitutions (3), silent substitutions (4) or non-coding substitutions (5) that were predicted to have little effect on efficiency of the splicing machinery.

Conclusion

Altogether, our data suggest that RAD51 tolerates so little dysfunctional sequence variation that rare variants in the gene contribute little, if anything, to breast cancer susceptibility.  相似文献   

5.

Objectives

Genome-wide association studies have facilitated the identification of over 30 susceptibility loci for rheumatoid arthritis (RA). However, evidence for a number of potential susceptibility genes have not so far reached genome-wide significance in studies of Caucasian RA.

Methods

A cohort of 4286 RA patients from across Europe and 5642 population matched controls were genotyped for 25 SNPs, then combined in a meta-analysis with previously published data.

Results

Significant evidence of association was detected for nine SNPs within the European samples. When meta-analysed with previously published data, 21 SNPs were associated with RA susceptibility. Although SNPs in the PTPN2 gene were previously reported to be associated with RA in both Japanese and European populations, we show genome-wide evidence for a different SNP within this gene associated with RA susceptibility in an independent European population (rs7234029, P = 4.4×10−9).

Conclusions

This study provides further genome-wide evidence for the association of the PTPN2 locus (encoding the T cell protein tyrosine phosphastase) with Caucasian RA susceptibility. This finding adds to the growing evidence for PTPN2 being a pan-autoimmune susceptibility gene.  相似文献   

6.

Background

Prostate cancer (PCa) and colorectal cancer (CRC) are the most commonly diagnosed cancers and cancer-related causes of death in Poland. To date, numerous single nucleotide polymorphisms (SNPs) associated with susceptibility to both cancer types have been identified, but their effect on disease risk may differ among populations.

Methods

To identify new SNPs associated with PCa and CRC in the Polish population, a genome-wide association study (GWAS) was performed using DNA sample pools on Affymetrix Genome-Wide Human SNP 6.0 arrays. A total of 135 PCa patients and 270 healthy men (PCa sub-study) and 525 patients with adenoma (AD), 630 patients with CRC and 690 controls (AD/CRC sub-study) were included in the analysis. Allele frequency distributions were compared with t-tests and χ2-tests. Only those significantly associated SNPs with a proxy SNP (p<0.001; distance of 100 kb; r2>0.7) were selected. GWAS marker selection was conducted using PLINK. The study was replicated using extended cohorts of patients and controls. The association with previously reported PCa and CRC susceptibility variants was also examined. Individual patients were genotyped using TaqMan SNP Genotyping Assays.

Results

The GWAS selected six and 24 new candidate SNPs associated with PCa and CRC susceptibility, respectively. In the replication study, 17 of these associations were confirmed as significant in additive model of inheritance. Seven of them remained significant after correction for multiple hypothesis testing. Additionally, 17 previously reported risk variants have been identified, five of which remained significant after correction.

Conclusion

Pooled-DNA GWAS enabled the identification of new susceptibility loci for CRC in the Polish population. Previously reported CRC and PCa predisposition variants were also identified, validating the global nature of their associations. Further independent replication studies are required to confirm significance of the newly uncovered candidate susceptibility loci.  相似文献   

7.

Background

In Taiwan, oral cancer has causally been associated with environmental carcinogens. Carbonic anhydrase 9 (CA9) is reportedly overexpressed in several types of carcinomas and is generally considered a marker of malignancy. The current study explored the combined effect of CA9 gene polymorphisms and exposure to environmental carcinogens on the susceptibility of developing oral squamous cell carcinoma (OSCC) and the clinicopathological characteristics of the tumors.

Methodology and Principal Findings

Four single-nucleotide polymorphisms (SNPs) of the CA9 gene from 462 patients with oral cancer and 519 non-cancer controls were analyzed by a real-time polymerase chain reaction (PCR). While the studied SNPs (CA9 rs2071676, rs3829078, rs1048638 and +376 Del) were not associated with susceptibility to oral cancer, the GAA haplotype of 3 CA9 SNPs (rs2071676, rs3829078, and rs1048638) was related to a higher risk of oral cancer. Moreover, the four CA9 SNPs combined with betel quid chewing and/or tobacco consumption could robustly elevate susceptibility to oral cancer. Finally, patients with oral cancer who had at least one G allele of CA9 rs2071676 were at higher risk for developing lymph-node metastasis (p = 0.022), compared to those patients homozygous for AA.

Conclusions

Our results suggest that the haplotype of rs2071676, rs3829078, and rs1048638 combined has potential predictive significance in oral carcinogenesis. Gene-environment interactions of CA9 polymorphisms, smoking, and betel-quid chewing might alter oral cancer susceptibility and metastasis.  相似文献   

8.

Introduction

CD226 genetic variants have been associated with a number of autoimmune diseases and recently with systemic sclerosis (SSc). The aim of this study was to test the influence of CD226 loci in SSc susceptibility, clinical phenotypes and autoantibody status in a large multicenter European population.

Methods

A total of seven European populations of Caucasian ancestry were included, comprising 2,131 patients with SSc and 3,966 healthy controls. Three CD226 single nucleotide polymorphisms (SNPs), rs763361, rs3479968 and rs727088, were genotyped using Taqman 5''allelic discrimination assays.

Results

Pooled analyses showed no evidence of association of the three SNPs, neither with the global disease nor with the analyzed subphenotypes. However, haplotype block analysis revealed a significant association for the TCG haplotype (SNP order: rs763361, rs34794968, rs727088) with lung fibrosis positive patients (PBonf = 3.18E-02 OR 1.27 (1.05 to 1.54)).

Conclusion

Our data suggest that the tested genetic variants do not individually influence SSc susceptibility but a CD226 three-variant haplotype is related with genetic predisposition to SSc-related pulmonary fibrosis.  相似文献   

9.
10.
11.

Introduction

In recent genome-wide association studies for psoriatic arthritis (PsA) and psoriasis vulgaris, common coding variants in the TRAF3IP2 gene were identified to contribute to susceptibility to both disease entities. The risk allele of p.Asp10Asn (rs33980500) proved to be most significantly associated and to encode a mutant protein with an almost completely disrupted binding property to TRAF6, supporting its impact as a main disease-causing variant and modulator of IL-17 signaling.

Methods

To identify further variants, exons 2-4 encoding both known TNF-receptor-associated factor (TRAF) binding domains were sequenced in 871 PsA patients. Seven missense variants and one three-base-pair insertion were identified in 0.06% to 1.02% of alleles. Five of these variants were also present in 931 control individuals at comparable frequency. Constructs containing full-length wild-type or mutant TRAF3IP2 were generated and used to analyze functionally all variants for TRAF6-binding in a mammalian two-hybrid assay.

Results

None of the newly found alleles, though, encoded proteins with different binding properties to TRAF6, or to the cytoplasmic tail of the IL-17-receptor α-chain, suggesting that they do not contribute to susceptibility.

Conclusions

Thus, the TRAF3IP2-variant p.Asp10Asn is the only susceptibility allele with functional impact on TRAF6 binding, at least in the German population.  相似文献   

12.

Background

Tuberculosis (TB) is an infectious disease that remains a major cause of morbidity and mortality worldwide, yet the reasons why only 10% of people infected with Mycobacterium tuberculosis go on to develop clinical disease are poorly understood. Genetically determined variation in the host immune response is one factor influencing the response to M. tuberculosis. SP110 is an interferon-responsive nuclear body protein with critical roles in cell cycling, apoptosis and immunity to infection. However association studies of the gene with clinical TB in different populations have produced conflicting results.

Methods

To examine the importance of the SP110 gene in immunity to TB in the Vietnamese we conducted a case-control genetic association study of 24 SP110 variants, in 663 patients with microbiologically proven TB and 566 unaffected control subjects from three tertiary hospitals in northern Vietnam.

Results

Five SNPs within SP110 were associated with all forms of TB, including four SNPs at the C terminus (rs10208770, rs10498244, rs16826860, rs11678451) under a dominant model and one SNP under a recessive model, rs7601176. Two of these SNPs were associated with pulmonary TB (rs10208770 and rs16826860) and one with extra-pulmonary TB (rs10498244).

Conclusion

SP110 variants were associated with increased susceptibility to both pulmonary and extra-pulmonary TB in the Vietnamese. Genetic variants in SP110 may influence macrophage signaling responses and apoptosis during M. tuberculosis infection, however further research is required to establish the mechanism by which SP110 influences immunity to tuberculosis infection.  相似文献   

13.

Background

Recent genome-wide studies identified a risk locus for colorectal cancer at 18q21, which maps to the SMAD7 gene. Our objective was to confirm the association between SMAD7 SNPs and colorectal cancer risk in the multi-center Colon Cancer Family Registry.

Materials and Methods

23 tagging SNPs in the SMAD7 gene were genotyped among 1,592 population-based and 253 clinic-based families. The SNP-colorectal cancer associations were assessed in multivariable conditional logistic regression.

Results

Among the population-based families, both SNPs rs12953717 (odds ratio, 1.29; 95% confidence interval, 1.12–1.49), and rs11874392 (odds ratio, 0.80; 95% confidence interval, 0.70–0.92) were associated with risk of colorectal cancer. These associations were similar among the population- and the clinic-based families, though they were significant only among the former. Marginally significant differences in the SNP-colorectal cancer associations were observed by use of nonsteroidal anti-inflammatory drugs, cigarette smoking, body mass index, and history of polyps.

Conclusions

SMAD7 SNPs were associated with colorectal cancer risk in the Colon Cancer Family Registry. There was evidence suggesting that the association between rs12953717 and colorectal cancer risk may be modified by factors such as smoking and use of nonsteroidal anti-inflammatory drugs.  相似文献   

14.

Background

Several studies point to a role of Toll-like receptors (TLRs) in the development of rheumatoid arthritis (RA). We investigated if genetic variants in TLR genes are associated with RA and response to tumour necrosis factor blocking (anti-TNF) medication.

Methodology and Principal Findings

22 single nucleotide polymorphisms (SNPs) in seven TLR genes were genotyped in a Dutch cohort consisting of 378 RA patients and 294 controls. Significantly associated variants were investigated in replication cohorts from The Netherlands, United Kingdom and Sweden (2877 RA patients and 2025 controls). 182 of the Dutch patients were treated with anti-TNF medication. Using these patients and a replication cohort (269 Swedish patients) we analysed if genetic variants in TLR genes were associated with anti-TNF outcome. In the discovery phase of the study we found a significant association of SNPs rs2072493 in TLR5 and rs3853839 in TLR7 with RA disease susceptibility. Meta-analysis of discovery and replication cohorts did not confirm these findings. SNP rs2072493 in TLR5 was associated with anti-TNF outcome in the Dutch but not in the Swedish population.

Conclusion

We conclude that genetic variants in TLRs do not play a major role in susceptibility for developing RA nor in anti-TNF treatment outcome in a Caucasian population.  相似文献   

15.

Background

Two recent reports have identified the Endothelial Protein C Receptor (EPCR) as a key molecule implicated in severe malaria pathology. First, it was shown that EPCR in the human microvasculature mediates sequestration of Plasmodium falciparum-infected erythrocytes. Second, microvascular thrombosis, one of the major processes causing cerebral malaria, was linked to a reduction in EPCR expression in cerebral endothelial layers. It was speculated that genetic variation affecting EPCR functionality could influence susceptibility to severe malaria phenotypes, rendering PROCR, the gene encoding EPCR, a promising candidate for an association study.

Methods

Here, we performed an association study including high-resolution variant discovery of rare and frequent genetic variants in the PROCR gene. The study group, which previously has proven to be a valuable tool for studying the genetics of malaria, comprised 1,905 severe malaria cases aged 1–156 months and 1,866 apparently healthy children aged 2–161 months from the Ashanti Region in Ghana, West Africa, where malaria is highly endemic. Association of genetic variation with severe malaria phenotypes was examined on the basis of single variants, reconstructed haplotypes, and rare variant analyses.

Results

A total of 41 genetic variants were detected in regulatory and coding regions of PROCR, 17 of which were previously unknown genetic variants. In association tests, none of the single variants, haplotypes or rare variants showed evidence for an association with severe malaria, cerebral malaria, or severe malaria anemia.

Conclusion

Here we present the first analysis of genetic variation in the PROCR gene in the context of severe malaria in African subjects and show that genetic variation in the PROCR gene in our study population does not influence susceptibility to major severe malaria phenotypes.  相似文献   

16.

Background

Independent genome-wide association studies (GWAS) showed an obesogenic effect of two single nucleotide polymorphisms (SNP; rs12970134 and rs17782313) more than 150 kb downstream of the melanocortin 4 receptor gene (MC4R). It is unclear if the SNPs directly influence MC4R function or expression, or if the SNPs are on a haplotype that predisposes to obesity or includes functionally relevant genetic variation (synthetic association). As both exist, functionally relevant mutations and polymorphisms in the MC4R coding region and a robust association downstream of the gene, MC4R is an ideal model to explore synthetic association.

Methodology/Principal Findings

We analyzed a genomic region (364.9 kb) encompassing the MC4R in GWAS data of 424 obesity trios (extremely obese child/adolescent and both parents). SNP rs12970134 showed the lowest p-value (p = 0.004; relative risk for the obesity effect allele: 1.37); conditional analyses on this SNP revealed that 7 of 78 analyzed SNPs provided independent signals (p≤0.05). These 8 SNPs were used to derive two-marker haplotypes. The three best (according to p-value) haplotype combinations were chosen for confirmation in 363 independent obesity trios. The confirmed obesity effect haplotype includes SNPs 3′ and 5′ of the MC4R. Including MC4R coding variants in a joint model had almost no impact on the effect size estimators expected under synthetic association.

Conclusions/Significance

A haplotype reaching from a region 5′ of the MC4R to a region at least 150 kb from the 3′ end of the gene showed a stronger association to obesity than single SNPs. Synthetic association analyses revealed that MC4R coding variants had almost no impact on the association signal. Carriers of the haplotype should be enriched for relevant mutations outside the MC4R coding region and could thus be used for re-sequencing approaches. Our data also underscore the problems underlying the identification of relevant mutations depicted by GWAS derived SNPs.  相似文献   

17.

Background

Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility.

Methodology/Principal Findings

The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion) were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals). Borderline association to preeclampsia (p = 0.0153) was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946) in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2), 851 preeclamptic and 1,440 non-preeclamptic women).

Conclusion/Significance

TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in preeclampsia pathogenesis, and propose the rs16972194 variant as a candidate for further functional evaluation.  相似文献   

18.

Background

RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response.

Methodology/Principal Findings

Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P229fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S183I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein.

Conclusions/Significance

Hence, this study characterized P229fs and S183I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.  相似文献   

19.

Objective

Genetic variants regulating the host immune system may contribute to the susceptibility for the development of gastric cancer. Little is known about the role of the innate immunity- and non-Hodgkin’s lymphoma (NHL)-related genes for gastric cancer risk. This nested case-control study was conducted to identify candidate genes for gastric cancer risk for future studies.

Methods

In the Discovery phase, 3,072 SNPs in 203 innate immunity- and 264 NHL-related genes using the Illumine GoldenGateTM OPA Panel were analyzed in 42 matched case-control sets selected from the Korean Multi-center Cancer Cohort (KMCC). Six significant SNPs in four innate immunity (DEFA6, DEFB1, JAK3, and ACAA1) and 11 SNPs in nine NHL-related genes (INSL3, CHMP7, BCL2L11, TNFRSF8, RAD50, CASP7, CHUK, CD79B, and CLDN9) with a permutated p-value <0.01 were re-genotyped in the Replication phase among 386 cases and 348 controls. Odds ratios (ORs) for gastric cancer risk were estimated adjusting for age, smoking status, and H. pylori and CagA sero-positivity. Summarized ORs in the total study population (428 cases and 390 controls) are presented using pooled- and meta-analyses.

Results

Four SNPs had no heterogeneity across the phases: in the meta-analysis, DEFA6 rs13275170 and DEFB1 rs2738169 had both a 1.3-fold increased odds ratio (OR) for gastric cancer (95% CIs = 1.1–1.6; and 1.1–1.5, respectively). INSL3 rs10421916 and rs11088680 had both a 0.8-fold decreased OR for gastric cancer (95% CIs = 0.7–0.97; and 0.7–0.9, respectively).

Conclusions

Our findings suggest that certain variants in the innate immunity and NHL-related genes affect the gastric cancer risk, perhaps by modulating infection-inflammation-immunity mechanisms that remain to be defined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号