首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Large hydropower schemes have recently gained renewed interest as a provider of efficient and renewable energy, particularly in developing countries. However, some dams may have widespread effects on hydrological and ecosystem integrity, which reach beyond the scales addressed by typical environmental impact assessments. In this paper we address two main ecological impacts—reduced river connectivity and changes in the natural flow regime—at the scale of the entire Mekong River Basin as an important component of dam evaluations. The goal is to improve our understanding of the effect of individual dams as well as clusters of dams at a very large scale. We introduce two new indices, the River Connectivity Index (RCI) as a tool to measure network connectivity, and the River Regulation Index (RRI) as a measure of flow alteration, and calculate the individual and cumulative impact of 81 proposed dams using HydroROUT, a graph-theory based river routing model. Furthermore, we demonstrate how quantitative weighting, e.g. based on river habitat characterizations or species distribution models, may be included in dam impact assessments.A global comparison of large rivers shows that the Mekong would experience strong deterioration in the fragmentation and flow regulation indices if all dams that are currently under consideration in the basin were built, placing it among other heavily impounded rivers in the world. The results illustrate the importance of considering the location of dams, both relative in the network and relative to other already existing dams. Our approach may be used as an index-based ranking system for individual dams, or to compare basin-wide development scenarios, with the goal of providing guidance for decision makers wishing to select locations for future dams with less environmental impacts and to identify and develop potential mitigation strategies.  相似文献   

2.

Aim

Human‐driven impacts constantly threat amphibians, even in largely protected regions such as the Amazon. The Brazilian Amazon is home to a great diversity of amphibians, several of them currently threatened with extinction. We investigated how climate change, deforestation and establishment of hydroelectric dams could affect the geographic distribution of Amazonian amphibians by 2030 and midcentury.

Location

The Brazilian Amazon.

Methods

We overlapped the geographic distribution of 255 species with the location of hydroelectric dams, models of deforestation and climate change scenarios for the future.

Results

We found that nearly 67% of all species and 54% of species with high degree of endemism within the Legal Brazilian Amazon would lose habitats due to the hydroelectric overlapping. In addition, deforestation is also a potential threat to amphibians, but had a smaller impact compared to the likely changes in climate. The largest potential range loss would be caused by the likely increase in temperature. We found that five amphibian families would have at least half of the species with over 50% of potential distribution range within the Legal Brazilian Amazon limits threatened by climate change between 2030 and 2050.

Main conclusions

Amphibians in the Amazon are highly vulnerable to climate change, which may cause, directly or indirectly, deleterious biological changes for the group. Under modelled scenarios, the Brazilian Government needs to plan for the development of the Amazon prioritizing landscape changes of low environmental impact and economic development to ensure that such changes do not cause major impacts on amphibian species while reducing the emission of greenhouse gases.
  相似文献   

3.
4.
  1. Amazonian goliath catfishes are widespread in the Amazon Basin. Recently, otolith 87Sr:86Sr analyses using laser ablation–multi-collector–inductively coupled plasma mass spectrometry (LA-MC-ICPMS) revealed a >8,000 km trans-Amazonian natal homing in Brachyplatystoma rousseauxii among fish caught and hatched in the largest Amazon River tributary, the upper Madeira basin. Although also suspected for fish in the upper Amazon, homing could not be demonstrated owing to less distinct environmental 87Sr:86Sr gradients along the Amazon mainstem. Using scanning X-ray fluorescence microscopy (SXFM), a separate study provided evidence that Se:Ca and Sr:Ca are useful markers for identifying migration into Andean headwaters and the estuarine environment.
  2. We analysed otoliths of known 87Sr:86Sr profiles using SXFM mapping to test if Sr:Ca and Se:Ca patterns could demonstrate natal homing for three fish caught in the upper Amazon, using as reference two individuals that were natal homers and two forced residents (hatched after the construction of hydroelectric dams on the Madeira River) from the upper Madeira River.
  3. As hypothesised, although the Sr isotope profiles of the upper Amazon individuals were uninformative, two of them presented similar alternating mirror patterns of Sr:Ca and Se:Ca to those of the upper Madeira natal homers, indicating migrations out of the Andean region and into the estuary area. Both were therefore natal homers from the upper Amazon.
  4. The third individual from the upper Amazon presented similar Sr:Ca and Se:Ca patterns to those of the upper Madeira residents, suggesting it was a natural resident from the upper Amazon.
  5. By combining the results of 87Sr:86Sr analyses (LA-MC-ICPMS) and Sr:Ca and Se:Ca mappings (SXFM) that are completely independent of one another, we demonstrated that B. rousseauxii also performs natal homing in the upper Amazon. Our results indicate that the life cycle of B. rousseauxii is more complex than previous literature hypothesised, with the existence of partial migration, even in absence of physical barriers. Quantifying the relative importance of these different life-history strategies will have important implications for fisheries management. Our results also lay the groundwork for conservation efforts in the context of hydropower development in the Amazon Basin and set testable hypotheses of the potential impacts of the Madeira River dams.
  相似文献   

5.
Upstream range shifts of freshwater fishes have been documented in recent years due to ongoing climate change. River fragmentation by dams, presenting physical barriers, can limit the climatically induced spatial redistribution of fishes. Andean freshwater ecosystems in the Neotropical region are expected to be highly affected by these future disturbances. However, proper evaluations are still missing. Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections (2070s), we (a) evaluated the potential impacts of future climate on species ranges, (b) investigated the combined impact of river fragmentation and climate change and (c) tested the relationships between these impacts and species functional traits. Results show that climate change will induce range contraction for most of the Andean Amazon fish species, particularly those inhabiting highlands. Dams are not predicted to greatly limit future range shifts for most species (i.e., the Barrier effect). However, some of these barriers should prevent upstream shifts for a considerable number of species, reducing future potential diversity in some basins. River fragmentation is predicted to act jointly with climate change in promoting a considerable decrease in the probability of species to persist in the long‐term because of splitting species ranges in smaller fragments (i.e., the Isolation effect). Benthic and fast‐flowing water adapted species with hydrodynamic bodies are significantly associated with severe range contractions from climate change.  相似文献   

6.
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land‐cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free‐flowing tributaries in the next few decades if all 277 planned dams are completed. Land‐cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.  相似文献   

7.
Summary Research into mitigation of the ecological impacts of rainforest roads in North Queensland has a long history, commencing during the formative years of Australian road ecology. In Queensland’s Wet Tropics and throughout Australia, installation of engineered structures to ameliorate ecological road impacts is now common during larger construction projects, but unusual in smaller road projects. Retro‐fitting of engineering solutions to roads that are causing obvious impacts is also uncommon. Currently, Australian mitigation measures concentrate on two important impacts: road mortality and terrestrial habitat fragmentation. Unfortunately, other important ecological impacts of roads are seldom addressed. These include edge effects, traffic disturbance, exotic invasions and fragmentation of stream habitats. In North Queensland, faunal underpasses and canopy bridges across rainforest roads have been monitored over long periods. These structures are used frequently by multiple individuals of various species, implying effectiveness for movements and dispersal of many generalist and specialised rainforest animals. However, without addressing population and genetic implications, assessment of effectiveness of these connectivity structures is not holistic. These aspects need sufficient long‐term funding to allow similar systematic monitoring before and after construction. Throughout Australia, more holistic approaches to mitigation of road impacts would routinely examine population and genetic connectivity, consider mitigation against more ecological impacts where appropriate and include landscape‐scale replication.  相似文献   

8.
One of the most evident and direct effects of roads on wildlife is the death of animals by vehicle collision. Understanding the spatial patterns behind roadkill helps to plan mitigation measures to reduce the impacts of roads on animal populations. However, although roadkill patterns have been extensively studied in temperate zones, the potential impacts of roads on wildlife in the Neotropics have received less attention and are particularly poorly understood in the Western Amazon. Here, we present the results of a study on roadkill in the Amazon region of Ecuador; a region that is affected by a rapidly increasing development of road infrastructure. Over the course of 50 days, in the wet season between September and November 2017, we searched for road‐killed vertebrates on 15.9 km of roads near the city of Tena, Napo province, for a total of 1,590 surveyed kilometers. We recorded 593 dead specimens, predominantly reptiles (237 specimens, 40%) and amphibians (190, 32%), with birds (102, 17%) and mammals (64, 11%) being less common. Recorded species were assigned to three functional groups, based on their movement behavior and habitat use (“slow,” “intermediate,” and “fast”). Using Ripley's K statistical analyses and 2D HotSpot Identification Analysis, we found multiple distinct spatial clusters or hotspots, where roadkill was particularly frequent. Factors that potentially determined these clusters, and the prevalence of roadkill along road segments in general, differed between functional groups, but often included land cover variables such as native forest and waterbodies, and road characteristics such as speed limit (i.e., positive effect on roadkill frequency). Our study, which provides a first summary of species that are commonly found as roadkill in this part of the Amazon region, contributes to a better understanding of the negative impacts of roads on wildlife and is an important first step toward conservation efforts to mitigate these impacts.  相似文献   

9.
基于等级层次分析法的金沙江下游地区生态功能分区   总被引:5,自引:0,他引:5  
金沙江下游地区是我国西南重要的生态环境保护区域,也是我国未来水电建设的重要区域,在西南民族经济和区域可持续发展等方面都具有十分重要的战略意义。该地区水能资源开发潜力巨大,是我国重要的能源基地,但是该地区生态环境相对脆弱。为了保护这些脆弱生态环境的地区,尽管国家和大多数省级层次的生态功能分区已经制定并颁布和实施,但是如何探索和制定区域、流域尺度的生态功能分区研究却为数不多。而大尺度的生态功能分区研究并不一定非常适合这一具体流域实际情况,所以小尺度典型流域的生态功能分区探索是非常必要的。基于金沙江下游地区的生态环境特征,运用空间分析的方法和技术,采用定性和定量分析相结合的等级层次分析法,对金沙江下游地区进行了生态功能分区。结果表明:金沙江下游地区可划分为2个生态区、6个生态亚区和29个生态功能区;以流域尺度上水源涵养、水土保持和生物多样性保护为主导生态系统功能,进行了重要生态功能分区,确定了金沙江下游地区具有重要意义的19个重要生态功能区域。该重点区域的划分对金沙江下游地区生态安全具有重要生态意义,可用于指导金沙江下游地区自然资源的有序开发利用和产业布局的合理配置,为金沙江下游地区生态环境保护提供科学依据,对维护金沙江下游地区的水电生态安全提供重要指导。  相似文献   

10.
In an effort to ensure energy independence and exploit mineral resources, the governments of Amazonian countries are embarking on a major dam building drive on the basin’s rivers, with 191 dams finished and a further 246 planned or under construction. This rush to harvest the basin’s vast renewable energy capacity has come without proper consideration of the likely negative environmental externalities on the world’s most speciose freshwater and terrestrial biotas. Here we highlight the economic drivers for hydropower development and review the literature to summarise the impacts of dam building on Amazonian biodiversity. We identify both direct and indirect impacts through the anticipated loss, fragmentation and degradation of riparian habitats. We then propose a series of measures to assess, curb and mitigate the impacts of destructive dams on Amazonian biodiversity.  相似文献   

11.
Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape‐Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America.  相似文献   

12.
梯级开发对河流生态系统和景观影响研究进展   总被引:2,自引:1,他引:1  
Yang K  Deng X  Li XL  Wen P 《应用生态学报》2011,22(5):1359-1367
作为水资源和水能开发利用的主要方式,河流梯级开发在满足国民经济各部门对河流水资源开发的要求和推动流域社会经济持续发展的同时,也对整个流域生态系统产生了不可避免的人为影响.本文根据河流梯级开发的过程和流域生态系统的特征,分别综述了梯级开发对坝址区生态系统、流域库区小气候、河岸带生态系统、水生态系统、河流湿地和流域景观生态的主要影响,并提出了研究展望,如加强梯级开发对各生态因子影响后的连锁反应和累积效应研究;在水库群运行和联合调度时期,应加强正负生态效应综合影响作用的研究以及不同时空尺度条件下对流域生态系统演替发展和稳定等方面的研究.  相似文献   

13.
Understanding the impact of barriers and habitat fragmentation on the ecology and genetics of species is of broad interest to many biologists. In aquatic systems, hydroelectric dams often present an impenetrable barrier to migratory fish and can have negative effects on their persistence. Hydroelectric dams constructed in the Coquitlam and Alouette Rivers in the Fraser River drainage (British Columbia, Canada) in the early 1900s were thought to have led to complete loss of anadromous sockeye salmon from both rivers. For both reservoirs, recent water release programs resulted in the unexpected downstream migration of juvenile sockeye salmon and the subsequent upstream migration of adults towards the reservoir 2 years later. Here we investigate the evolutionary impact of dams on the sockeye salmon migration behavior by investigating the genetic distinction between migratory and non-migratory individuals within the Alouette and Coquitlam reservoirs. We also compare historical and contemporary genetic connectivity among 11 Lower Fraser River sockeye sites to infer recent population connectivity changes that might have been influenced by anthropogenic activities. Our molecular genetic analyses show a genetic distinction between the sea-run and resident individuals from the Coquitlam reservoir and population splitting time estimates suggest a very recent divergence between them. These results indicate a genetic component to migration behavior. For our broader survey from 11 sites, our comparisons suggest a general decline in gene flow, with a few interesting exceptions. In summary, our results suggest (i) early stage divergence between life history forms of sockeye salmon within one reservoir, and (ii) recent changes in genetic connectivity among Lower Fraser River populations; both of these results have potential recovery implications for historically migratory populations that were affected by anthropogenic barriers such as hydroelectric dams.  相似文献   

14.
Human-induced ecological degradation in protected areas is of great concern in landscape ecological studies. Using Landsat TM data and GIS-based spatial analysis, we assessed the impacts of human disturbances on landscape structure in the Wolong Nature Reserve in southwestern China. Buffer zone and landscape dissimilarity analysis were used to examine the scope of three types of human-induced disturbances—construction of hydropower stations, human activities around settlement, and human activities along roads. We found that the impacts of these human disturbances extend to a threshold distance of about 1,000 m from the sources of disturbance. The intensity of the impact of human disturbances on landscape structure exhibited clear distance–decay effects. The first 200 m buffer zone is the area where human activities have inflicted the most visible changes, with a decrease of forest cover by 15–40% and an increase of shrub and barren land area by 15–50%. The relative intensity of the overall impact on landscape structure was highest around hydropower stations, second around human settlements, and lowest along roads. Overtime, however, the relative level of impact associated with construction of hydropower stations will likely decrease and that associated with human activities around settlements likely increase. Our case study of Wolong exposes hurdles that habitat preservation must cross in protected areas. Future management of Wolong Nature Reserve should focus on adoption of effective policies to further constrain human activities in the reserve.  相似文献   

15.
Large hydroelectric dams are one of the current drivers of habitat loss across Amazonian forests. We investigated how the primate community at a hydroelectric dam in Brazilian Amazonia responded to changes in the landscape and local habitat structure of land‐bridge islands after 21 yr of post‐isolation history. The Balbina Dam, constructed in 1986, inundated 3129 km2 of primary forests and created more than 3500 variable‐sized islands. We conducted primate and habitat structure surveys on 20 islands from 5 to 1815 ha, and extracted forest patch and landscape metrics for each island. The number of primate species per island varied between 0 and 7 species. Primate composition varied substantially according to both island area and forest cover remaining within the landscape, whereas island area alone was the most significant predictor of richness. Locally, tree density and vertical stratification were the most significant explanatory variables of primate composition and richness. A model containing area effects had the most explanatory power regarding site occupancy for most species. Individually, each species responded differently, with howler and brown capuchin monkeys showing greater tolerance to cope with habitat changes. Body size was also an important predictor of primate occupancy. We recommend protecting large fragments and enhancing the suitability of surrounding habitats to ensure primate conservation in most Neotropical fragmented landscapes. Given the flat topography of hydroelectric reservoirs, which mainly favors the formation of small islands, and the escalating hydropower development plans in Amazonia, our findings provide evidence for pervasive detrimental impacts of dams on primate communities.  相似文献   

16.
Several anthropic disturbances, including deforestation, fires, the building of roads and dams, have intensified in Amazon in last decades. These disturbances contribute to an increase in the occurrence and intensity of extreme events, such as more frequent floods and more severe droughts, due to climate change. Along the Amazonian rivers, aquatic herbaceous plants, mainly of the Poaceae family, are very abundant and produce up to three times more biomass than the adjacent flooded forests, and some are considered ecosystem engineers given their structuring role in these environments. Invasive grasses have spread through the Neotropics and are gradually entering the Amazon via the Arc of Deforestation. These invasive species often attain high coverage, suppress other species, and become dominant in both disturbed and pristine habitats. The aim of this study was to establish the current and future distribution patterns of two native ecosystem engineer species (Echinochloa polystachya and Paspalum fasciculatum) and two invasive species (Urochloa brizantha and Urochloa decumbens) in the Amazon Basin. To predict the future climate, we used three scenarios, namely SSP1–2.6, SSP3–7.0 and SSP5–8.5 for the years 2040, 2080 and 2100, to project climatically suitable areas. The current climatically suitable range for the native ecosystem engineer species was estimated at 33–35% of the Amazon Basin, while the invasive ones have a range of 53–84% in potential climatically suitable areas. A decrease in the areas of suitability of the two ecosystem engineer species, E. polystachya and P. fasciculatum, was observed in all scenarios and years, while only the invasive U. brizantha showed an increase in suitable areas in all years. These results raise concerns about the invasion of grasses with high aggressive potential that could result in the exclusion of native ecosystem engineer species and their ecological roles.  相似文献   

17.
基于能值分析的我国小水电生态影响研究   总被引:1,自引:0,他引:1  
庞明月  张力小  王长波 《生态学报》2015,35(8):2741-2749
如何系统定量地评价小水电开发过程所引起的景观变化、河流局部断流等生态影响,是平息争议、进行合理规划与开发小水电前提之一。运用能值分析方法,以贵州省赤水市观音岩水电站为例,将小水电建设、运行的资源投入,以及河道中水流的时空改变所导致生态服务功能的损失纳入核算体系,对其生态影响进行综合定量评估。从2010年的实际结果来看,由于河流断流,导致水坝下游生态系统服务功能的能值损失为2.77×1018sej,占到了系统建设运行总投入的44.84%,其中重点保护鱼种在影响河段的生境破坏是最大的能值损失。若不考虑下游生态系统服务功能损失,系统的环境负载率为1.92,可持续性指标为1.22;而考虑下游生态影响之后,系统环境负载率增大至4.26,可持续性指标减小为0.34。研究表明,小水电的开发必须遵循适度开发、规划优先,保障河流最基本的生态需水底线,是协调小水电开发和河流健康矛盾、追求小水电持续发展的刚性要求。  相似文献   

18.

Purpose

Expanding renewable energy production is widely accepted as a promising strategy in climate change mitigation. However, even renewable energy production has some environmental impacts, some of which are not (yet) covered in life cycle impact assessment (LCIA). We aim to identify the most important cause-effect pathways related to hydropower production on biodiversity, as one of the most common renewable energy sources, and to provide recommendations for future characterization factor (CF) development.

Methods

We start with a comprehensive review of cause-effect chains related to hydropower production for both aquatic and terrestrial biodiversity. Next, we explore contemporary coverage of impacts on biodiversity from hydropower production in LCA. Further, we select cause-effect pathways displaying some degree of consistency with existing LCA frameworks for method development recommendations. For this, we compare and contrast different hydrologic models and discuss how existing LCIA methodologies might be modified or combined to improve the assessment of biodiversity impacts from hydropower production.

Results and discussion

Hydropower impacts were categorized into three overarching impact pathways: (1) freshwater habitat alteration, (2) water quality degradation, and (3) land use change. Impacts included within these pathways are flow alteration, geomorphological alteration to habitats, changes in water quality, habitat fragmentation, and land use transformation. For the majority of these impacts, no operational methodology exists currently. Furthermore, the seasonal nature of river dynamics requires a level of temporal resolution currently beyond LCIA modeling capabilities. State-of-the-art LCIA methods covering biodiversity impacts exist for land use and impacts from consumptive water use that can potentially be adapted to cases involving hydropower production, while other impact pathways need novel development.

Conclusions

In the short term, coverage of biodiversity impacts from hydropower could be significantly improved by adding a time step representing seasonal ecological water demands to existing LCIA methods. In the long term, LCIA should focus on ecological response curves based on multiple hydrologic indices to capture the spatiotemporal aspects of river flow, by using models based on the “ecological limits to hydrologic alteration” (ELOHA) approach. This approach is based on hydrologic alteration-ecological response curves, including site-specific environmental impact data. Though data-intensive, ELOHA represents the potential to build a global impact assessment framework covering multiple ecological indicators from local impacts. Further, we recommend LCIA methods based on degree of regulation for geomorphologic alteration and a fragmentation index based on dam density for “freshwater habitat alteration,” which our review identified as significant unquantified threats to aquatic biodiversity.
  相似文献   

19.
Deforestation and resulting landscape fragmentation are important concerns in many tropical areas. Deforestation is a complex process with many potential feedback loops, many of which are ignored in models that attempt to interpolate forest loss based on past deforestation rates. In addition, most ecological studies of the impacts of deforestation have focused on landscapes that are already fragmented. These studies ignore the fact that edge effects, such as anthropogenic fire, reach their maximum well before habitat connectivity is lost and may create positive feedbacks that result in further fragmentation. We developed a simple model to explore the potential influence of edge effects on fragmentation rates and used remotely sensed data from the MAP (Madre de Dios, Acre, and Pando) region of the Brazilian Amazon to parameterize the relationships of interest. Under reasonable real-world parameter combinations, edge effects can have a significant impact on deforestation rates, supporting the hypothesis that the true tipping point in a forest to pasture regime shift occurs earlier (i.e., ∼50% forest loss) than analysis of a loss in connectivity would suggest (i.e., ∼60% forest loss). Our results have important implications for understanding deforestation, edge-driven processes, regime shifts, and the management of complex pattern-process relationships.  相似文献   

20.
In order to meet carbon reduction targets, many nations are greatly expanding their wind power capacity. However, wind farm infrastructure potentially harms wildlife, and we must therefore find ways to balance clean energy demands with the need to protect wildlife. Wide-ranging carnivores live at low density and are particularly susceptible to disturbance from infrastructure development, so are a particular concern in this respect. We focused on Croatia, which holds an important population of wolves and is currently planning to construct many new wind farms. Specifically, we sought to identify an optimal subset of planned wind farms that would meet energy targets while minimising potential impact on wolves. A suitability model for wolf breeding habitat was carried out using Maxent, based on six environmental variables and 31 reproduction site locations collected between 1997 and 2015. Wind farms were prioritised using Marxan to find the optimal trade-off between energy capacity and overlap with critical wolf reproduction habitat. The habitat suitability model predictions were consistent with the current knowledge: probability of wolf breeding site presence increased with distance to settlements, distance to farmland and distance to roads and decreased with distance to forest. Spatial optimisation showed that it would be possible to meet current energy targets with only 31% of currently proposed wind farms, selected in a way that reduces the potential ecological cost (overall predicted wolf breeding site presence within wind farm sites) by 91%. This is a highly efficient outcome, demonstrating the value of this approach for prioritising infrastructure development based on its potential impact on wide-ranging wildlife species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号