首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe an efficient NMR triple resonance approach that correlates, at high resolution, protein side-chain and backbone resonances. It relies on the combination of two strategies: joint evolution of aliphatic side-chain proton/carbon coherences using a backbone N–H based HCcoNH reduced dimensionality (RD) experiment and non-uniform sampling (NUS) in two indirect dimensions. A typical data set containing such correlation information can be acquired in 2 days, at very high resolution unfeasible for conventional 4D HCcoNH-TOCSY experiments. The resonances of the aliphatic side-chain protons are unambiguously assigned to their attached carbons through the analysis of the ‘sum’ and ‘difference’ spectra. This approach circumvents the tedious process of manual resonance assignments using HCcH-TOCSY data, while providing additional resolving power of backbone N–H signals. A simple peak-list based algorithm has been implemented in the IBIS software for rapid automated backbone and side-chain assignments.  相似文献   

2.
Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.Abbreviations: BPTI – bovine pancreatic trypsin inhibitor; LP – linear prediction; FT – Fourier transform; S/N – signal-to-noise ratio; FID – free induction decay  相似文献   

3.
We describe an efficient NMR triple resonance approach for fast assignment of backbone amide resonance peaks in the 15N-HSQC spectrum. The exceptionally high resolutions achieved in the 3D HncocaNH and hNcocaNH experiments together with non-uniform sampling facilitate error-free sequential connection of backbone amides. Data required for the complete backbone amide assignment of the 56-residue protein GB1 domain were obtained in 14 h. Data analysis was vastly streamlined using a ‘backbone NH walk’ method to determine sequential connectivities without the need for 13C chemical shifts comparison. Amino acid residues in the sequentially connected NH chains are classified into two groups by a simple variation of the NMR pulse sequence, and the resulting ‘ZeBra’ stripe patterns are useful for mapping these chains to the protein sequence. In addition to resolving ambiguous assignments derived from conventional backbone experiments, this approach can be employed to rapidly assign small proteins or flexible regions in larger proteins, and to transfer assignments to mutant proteins or proteins in different ligand-binding states.  相似文献   

4.
Hsc70 is the constitutively expressed mammalian heat shock 70 kDa (Hsp70) cytosolic chaperone. It plays a central role in cellular proteostasis and protein trafficking. Here, we present the backbone and methyl group assignments for the 386-residue nucleotide binding domain of the human protein. This domain controls the chaperone’s allostery, binds multiple co-chaperones and is the target of several classes of known chemical Hsp70 inhibitors. The NMR assignments are based on common triple resonance experiments with triple labeled protein, and on several 15N and 13C-resolved 3D NOE experiments with methyl-reprotonated samples. A combination of computer and manual data interpretation was used.  相似文献   

5.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) of Escherichia coli. Virtually complete (98%) backbone 1H, 15N, and 13C nuclear magnetic resonance (NMR) signal assignments were determined by using a battery of triple-resonance three-dimensional (3D) NMR pulse sequences. In addition, nearly complete (1H, 95%; 13C, 85%) side-chain 1H and 13C signal assignments were obtained from an analysis of 3D 13C HCCH-COSY and HCCH-TOCSY spectra. These experiments rely almost exclusively upon one- and two-bond J couplings to transfer magnetization and to correlate proton and heteronuclear NMR signals. Hence, essentially complete signal assignments of this 168-residue protein were made without any assumptions regarding secondary structure and without the aid of a crystal structure, which is not yet available. Moreover, only three samples, one uniformly 15N-enriched, one uniformly 15N/13C-enriched, and one containing a few types of amino acids labeled with 15N and/or 13C, were needed to make the assignments. The backbone assignments together with the 3D 15N NOESY-HMQC and 13C NOESY-HMQC data have provided extensive information about the secondary structure of this protein [Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y., & Roseman, S (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3479-3488]. The nearly complete set of backbone and side-chain atom assignments reported herein provide a basis for studies of the three-dimensional structure and dynamics of IIIGlc as well as its interactions with a variety of membrane and cytoplasmic proteins.  相似文献   

6.
We have developed a tool for computer-assisted assignments of protein NMR spectra from triple resonance data. The program is designed to resemble established manual assignment procedures as closely as possible. IBIS exports its results in XEASY format. Thus, using IBIS the operator has continuous visual and accounting control over the progress of the assignment procedure. IBIS achieves complete assignments for those residues that exhibit sequential triple resonance connectivities within a few hours or days.  相似文献   

7.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

8.
ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.  相似文献   

9.
The ABACUS algorithm obtains the protein NMR structure from unassigned NOESY distance restraints. ABACUS works as an integrated approach that uses the complete set of available NMR experimental information in parallel and yields spin system typing, NOE spin pair identities, sequence specific resonance assignments, and protein structure, all at once. The protocol starts from unassigned molecular fragments (including single amino acid spin systems) derived from triple-resonance (1)H/(13)C/(15)N NMR experiments. Identifications of connected spin systems and NOEs precede the full sequence specific resonance assignments. The latter are obtained iteratively via Monte Carlo-Metropolis and/or probabilistic sequence selections, molecular dynamics structure computation and BACUS filtering (A. Grishaev and M. Llinás, J Biomol NMR 2004;28:1-10). ABACUS starts from scratch, without the requirement of an initial approximate structure, and improves iteratively the NOE identities in a self-consistent fashion. The procedure was run as a blind test on data recorded on mth1743, a 70-amino acid genomic protein from M. thermoautotrophicum. It converges to a structure in ca. 15 cycles of computation on a 3-GHz processor PC. The calculated structures are very similar to the ones obtained via conventional methods (1.22 A backbone RMSD). The success of ABACUS on mth1743 further validates BACUS as a NOESY identification protocol.  相似文献   

10.
We present an approach for the assignment of protein NMR resonances that combines established and new concepts: (a) Based on published reduced dimensionality methods, two 5-dimensional experiments are proposed. (b) Multi-way decomposition (PRODECOMP) applied simultaneously to all acquired NMR spectra provides the assignment of resonance frequencies under conditions of very low signal-to-noise. (c) Each resulting component characterizes all spin (1/2) nuclei in a (doubly-labeled) CbetaH(n)-CalphaH-C'-NH-CalphaH-CbetaH(n) fragment in an unambiguous manner, such that sequentially neighboring components have about four atoms in common. (d) A new routine (SHABBA) determines correlations for all component pairs based on the common nuclei; high correlation values yield sequential chains of a dozen or more components. (e) The potentially error-prone peak picking is delayed to the last step, where it helps to place the component chains within the protein sequence, and thus to achieve the final backbone assignment. The approach was validated by achieving complete backbone resonance assignments for ubiquitin.  相似文献   

11.
Sequence-specific NMR assignments of the globular core comprising the residues 1066–1181 within the non-structural protein nsp3e from the SARS coronavirus have been obtained using triple-resonance NMR experiments with the uniformly [13C, 15N]-labeled protein. The backbone and side chain assignments are nearly complete, providing the basis for the ongoing NMR structure determination. A preliminary identification of regular secondary structures has been derived from the 13C chemical shifts.  相似文献   

12.
We report here almost complete backbone assignment of a Ca2+-binding protein of the βγ-crystallin superfamily from Methanosarcina acetivorans, at two denaturant (GdmCl) concentrations, using double and triple resonance experiments. These NMR assignments will be useful to understand the unfolding path of this protein. Ravi P. Barnwal and Geetika Agarwal have contributed equally.  相似文献   

13.
Almost complete assignment (97%) of NMR resonances was obtained for the reduced, Cu(I), form of prokaryotic CuZnSOD from Salmonella enterica. 13C direct detection was used to complement the standard bouquet of 1H detected triple resonance experiments and contributed to the identification of proline backbone resonances and to side chains assignments of Asx, Glx and aromatic rings. This is the only complete assignment available for monomer SOD from prokaryotic organisms.  相似文献   

14.
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called Nasca (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), Nasca extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that Nasca assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by Nasca have backbone RMSD 0.8–1.5 Å from the reference structures determined by traditional NMR approaches.  相似文献   

15.
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.  相似文献   

16.
A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, δ subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.  相似文献   

17.
Rapid analysis of protein structure, interaction, and dynamics requires fast and automated assignments of 3D protein backbone triple-resonance NMR spectra. We introduce a new depth-first ordered tree search method of automated assignment, CASA, which uses hand-edited peak-pick lists of a flexible number of triple resonance experiments. The computer program was tested on 13 artificially simulated peak lists for proteins up to 723 residues, as well as on the experimental data for four proteins. Under reasonable tolerances, it generated assignments that correspond to the ones reported in the literature within a few minutes of CPU time. The program was also tested on the proteins analyzed by other methods, with both simulated and experimental peaklists, and it could generate good assignments in all relevant cases. The robustness was further tested under various situations.  相似文献   

18.
Single molecules of the giant protein titin extend across half of the muscle sarcomere, from the Z-line to the M-line, and have roles in muscle assembly and elasticity. In the A-band titin is attached to thick filaments and here the domain arrangement occurs in regular patterns of eleven called the large super-repeat. The large super-repeat itself occurs eleven times and forms nearly half the titin molecule. Interactions of the large super-repeats with myosin are consistent with a role in thick filament assembly. Here we report backbone assignments of the titin A67-A68 domain tandem (Fn-Ig) from the third super-repeat (A65-A75) completed using triple resonance NMR experiments.  相似文献   

19.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

20.
(4,3)D, (5,3)D and (5,2)D GFT triple resonance NMR experiments are presented for polypeptide backbone and (13)C(beta) resonance assignment of (15)N/(13)C labeled proteins. The joint sampling of m = 2, 3 or 4 indirect chemical shift evolution periods of 4D and 5D NMR experiments yields the measurement of 2(m) - 1 linear combinations of shifts. To obtain sequential assignments, these are matched in corresponding experiments delineating either intra or interresidue correlations. Hence, an increased set of matches is registered when compared to conventional approaches, and the 4D or 5D information allows one to efficiently break chemical shift degeneracy. Moreover, comparison of single-quantum chemical shifts obtained after a least squares fit using either the intra or the interresidue data demonstrates that GFT NMR warrants highly accurate shift measurements. The new features of GFT NMR based resonance assignment strategies promise to be of particular value for establishing automated protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号