首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GMP-140, a receptor for myeloid cells that is expressed on surfaces of thrombin-activated platelets and endothelial cells, is a member of the selectin family of adhesion molecules that regulate leukocyte interactions with the blood vessel wall. Each selectin contains an N-terminal domain homologous to Ca(2+)-dependent lectins and mediates cell-cell contact by binding to oligosaccharide ligands in a Ca(2+)-dependent manner. The mechanisms by which Ca2+ promotes selectin-dependent cellular interactions have not been defined. We demonstrate that purified GMP-140 contains two high affinity binding sites for Ca2+ as measured by equilibrium dialysis (Kd = 22 +/- 2 microM). Occupancy of these sites by Ca2+ alters the conformation of the protein as detected by a reduction in intrinsic fluorescence emission intensity (Kd = 4.8 +/- 0.2 microM). This Ca(2+)-dependent conformational change exposes an epitope spanning residues 19-34 of the lectin domain that is recognized by a monoclonal antibody capable of blocking neutrophil adhesion to GMP-140 (half-maximal antibody binding at approximately 20 microM Ca2+). Furthermore, a synthetic peptide encoding this epitope, CQNRYTDLVAIQNKNE, inhibits neutrophil binding to GMP-140. Mg2+ also alters the conformation of the protein, but not in a manner that will support leukocyte recognition in the absence of Ca2+. There is a strong correlation between the Ca2+ levels required for neutrophil adhesion to GMP-140, for occupancy of the two Ca(2+)-binding sites, for the fluorescence-detected conformational change, and for exposure of the antibody epitope in the lectin domain. We conclude that binding of Ca2+ to high affinity sites on GMP-140 modulates the conformation of the lectin domain in a manner that is essential for leukocyte recognition.  相似文献   

2.
GMP-140 binding to neutrophils is inhibited by sulfated glycans.   总被引:11,自引:0,他引:11  
GMP-140 is a 140-kDa granule membrane glycoprotein localized to the alpha-granules of platelets and the Weibel-Palade bodies of endothelial cells. Expression of GMP-140 on the activated cell surface has been shown to mediate the adhesion of thrombin-activated platelets to neutrophils and monocytes and the transient adhesion of neutrophils to endothelium. In contrast, fluid-phase GMP-140 strongly inhibits the CD18-dependent adhesion of tumor necrosis factor alpha-activated neutrophils to endothelium suggesting that GMP-140 can also serve an anti-adhesive function. In the present report, it is demonstrated that fluid-phase GMP-140 which exists predominantly as a tetramer binds to a single class of high affinity receptor on neutrophils and HL60 cells. Binding of 125I-labeled GMP-140 to neutrophils and HL60 cells and the rosetting of neutrophils and HL60 cells by thrombin-activated platelets were inhibited by EDTA, excess unlabeled fluid-phase GMP-140, Fab fragments of an affinity-purified rabbit anti-GMP-140 antibody, and by the murine anti-GMP-140 monoclonal antibody, AK 4. Both neutrophil and HL60 GMP-140 binding and platelet rosetting were strongly inhibited by heparin, fucoidin, and dextran sulfate 500,000, were partially inhibited by dextran sulfate 5,000 and lambda- and kappa-carrageenan, but were not inhibited by chondroitins 4- and 6-sulfate. Since this sulfated glycan specificity is identical to that previously reported by us for GMP-140, the present results suggest that the sulfated glycan binding site and the neutrophil receptor binding site on GMP-140 are either identical or proximal.  相似文献   

3.
Platelet GMP-140, along with ELAM-1 and gp90MEL, comprise the LEC-CAM family of cell-cell adhesion proteins. The three proteins demonstrate a highly related domain organization, which includes an extracellular calcium-type lectin motif. gp90MEL, a lymphocyte homing receptor, mediates lymphocyte attachment to high endothelial venules of lymph nodes through recognition of a sialylated ligand on the endothelial cells. The rosetting of neutrophils or promyelocytic HL60 cells by activated platelets is mediated by GMP-140 on the platelets. We show here that treatment of neutrophils or HL60 cells with 3 broad spectrum sialidases completely prevents rosetting. However, the Newcastle disease virus sialidase, an enzyme specific for alpha 2,3 and alpha 2,8 linkages of sialic acid does not affect rosetting of HL60 cells. These results indicate that the ligand for GMP-140 requires sialic acid and suggest that an alpha 2,6 linkage may be critical.  相似文献   

4.
P-selectin (CD62, GMP-140, PADGEM), a Ca(2+)-dependent lectin on activated platelets and endothelium, functions as a receptor for myeloid cells by interacting with sialylated, fucosylated lactosaminoglycans. P-selectin binds to a limited number of protease-sensitive sites on myeloid cells, but the protein(s) that carry the glycans recognized by P-selectin are unknown. Blotting of neutrophil or HL-60 cell membrane extracts with [125I]P-selectin and affinity chromatography of [3H]glucosamine-labeled HL-60 cell extracts were used to identify P-selectin ligands. A major ligand was identified with an approximately 250,000 M(r) under nonreducing conditions and approximately 120,000 under reducing conditions. Binding of P-selectin to the ligand was Ca2+ dependent and was blocked by mAbs to P-selectin. Brief sialidase digestion of the ligand increased its apparent molecular weight; however, prolonged digestion abolished binding of P-selectin. Peptide:N-glycosidase F treatment reduced the apparent molecular weight of the ligand by approximately 3,000 but did not affect P-selectin binding. Western blot and immunodepletion experiments indicated that the ligand was not lamp-1, lamp-2, or L-selectin, which carry sialyl Le(x), nor was it leukosialin, a heavily sialylated glycoprotein of similar molecular weight. The preferential interaction of the ligand with P-selectin suggests that it may play a role in adhesion of myeloid cells to activated platelets and endothelial cells.  相似文献   

5.
K Handa  Y Igarashi  M Nisar  S Hakomori 《Biochemistry》1991,30(50):11682-11686
GMP-140 (CD62 or PADGEM), a member of the selectin family, is a membrane glycoprotein in secretory granules of platelets and endothelial cells. When these cells are activated by agonists such as thrombin or AMP, GMP-140 is rapidly redistributed to the cell surface. The carbohydrate epitope defined by GMP-140 was identified as sialosyl-Le(x) (as for ELAM-1), which may play an essential role in adhesion of leukocytes or tumor cells on endothelial cells, through aggregation with platelets. Redistribution of GMP-140 from alpha-granules of platelets to the cell surface, induced by thrombin and PMA, was strongly inhibited by preincubation of platelets with N,N-dimethylsphingosine (DMS) or N,N,N-trimethylsphingosine (TMS) at 10-20 microM concentration for a brief period (5 min). Inhibition of GMP-140 redistribution to the cell surface by DMS or TMS was also detected by a cell adhesion assay using HL60 cells, which highly express sialosyl-Le(x); i.e., HL60 cells adhered on platelets activated by thrombin or PMA but not on platelets which were briefly preincubated with DMS or TMS followed by activation. The inhibitory effect of DMS or TMS on GMP-140 redistribution is not due to cytotoxicity, since the TMS-treated platelets were fully capable of aggregating in the presence of ristocetin. Sphingosine (SPN) and protein kinase C inhibitors such as H-7 and calphostin C showed weaker inhibitory activity than DMS and TMS. Our results indicate that both DMS and TMS could be useful reagents to inhibit cell surface expression of crucial selectins which promote adhesion of Le(x-) or sialosyl-Le(x)-expressing cells with platelets and endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
G I Johnston  R G Cook  R P McEver 《Cell》1989,56(6):1033-1044
GMP-140 is an integral membrane glycoprotein found in secretory granules of platelets and endothelial cells. After cellular activation, it is rapidly redistributed to the plasma membrane. The cDNA-derived primary structure of GMP-140 predicts a cysteine-rich protein with multiple domains, including a "lectin" region, an "EGF" domain, nine tandem consensus repeats related to those in complement-binding proteins, a transmembrane domain, and a short cytoplasmic tail. Some cDNAs also predict a soluble protein with a deleted transmembrane segment. The domain organization of GMP-140 is similar to that of ELAM-1, a cytokine-inducible endothelial cell receptor that binds neutrophils. This similarity suggests that GMP-140 belongs to a new family of inducible receptors with related structure and function on vascular cells.  相似文献   

7.
R P McEver 《Blood cells》1990,16(1):73-80; discussion 80-3
GMP-140 is an integral membrane glycoprotein with an apparent Mr of 140,000 located in secretory granules of human platelets and endothelial cells. When these cells are stimulated, the protein is rapidly redistributed to the plasma membrane; therefore, monoclonal antibodies to GMP-140 are useful markers of activated platelets and endothelium. GMP-140 is cysteine-rich and heavily glycosylated. The cDNA-derived amino acid sequence indicates that it contains a number of modular domains that are likely to fold independently. Beginning at the N-terminus, these comprise a "lectin" domain, an "EGF" domain, nine tandem consensus repeats similar to those in complement-binding proteins, a transmembrane domain, and a cytoplasmic tail. Some cDNAs also predict variant forms of GMP-140, including a putative soluble form lacking the transmembrane domain that appears to arise from alternative splicing of mRNA. The domain organization of GMP-140 is strikingly similar to two other vascular cell surface structures: ELAM-1, a cytokine-inducible endothelial cell receptor that binds neutrophils, and a lymphocyte-homing receptor that mediates the adherence of lymphocytes to high endothelial venules of peripheral lymph nodes. These "selectins" constitute a new gene family of receptors with related structure and potentially related function.  相似文献   

8.
Characterization of human platelet GMP-140 as a heparin-binding protein   总被引:11,自引:0,他引:11  
Human platelet GMP-140 has been identified as a heparin-binding protein. Purified platelet GMP-140 bound to Heparin-Sepharose CL-6B and was eluted by approximately 0.5 M sodium chloride. Radioiodinated GMP-140 bound specifically and saturably to heparin immobilized on Matrex-Pel 102 beads. Binding of radioiodinated GMP-140 to heparin-Matrex-Pel 102 beads was divalent cation-independent and was strongly inhibited by excess fluid phase GMP-140 and heparin and by other sulfated glycans such as fucoidin and dextran-sulfate. Binding was not inhibited by chondroitins 4- and 6-sulfate or mannose 6-phosphate.  相似文献   

9.
Monoclonal and polyclonal antibodies have been developed that recognize a 140 kD glycoprotein on the plasma membrane of activated, but not unstimulated, platelets. This glycoprotein is found in resting platelets as an alpha-granule membrane protein and has therefore been named GMP-140. After thrombin stimulation, alpha-granules fuse with the surface-connected canalicular system and GMP-140 is redistributed to the plasma membrane. In the present study, we immunolabeled unstimulated and activated human platelets and analyzed the distribution of GMP-140 over broad expanses of the plasma membrane using surface replication techniques. Fixed platelets were allowed to settle onto poly-L-lysine-coated coverslips and immunolabeled with polyclonal anti-GMP-140, followed by protein A gold. After critical-point drying, rotary-shadowed surface replicas were made. GMP-140 was not present on the surfaces of unstimulated platelets, but thrombin stimulation resulted in the massive expression of GMP-140 on the cell surface, with the immunogold label monodispersed. In contrast, we recently found that GPIIb-IIIa, the fibrinogen receptor, is monodispersed on unstimulated platelets and clustered on activated platelets. Although GMP-140's hemostatic function is unknown, its monodispersed surface pattern implies significant differences form GPIIb-IIIa with respect to ligand binding and/or cytoskeletal interaction.  相似文献   

10.
Granule membrane protein-140 (GMP-140) is an inducible receptor for myeloid leukocytes on activated platelets and endothelium. Like other selectins, GMP-140 recognizes specific oligosaccharide ligands. However, prior data on the nature of these ligands are contradictory. We investigated the structural features required for ligand interaction with GMP-140 using purified GMP-140, cells naturally expressing specific oligosaccharides, and cells expressing cloned glycosyltransferases. Like the related selectin endothelial leukocyte adhesion molecule-1 (ELAM-1), GMP-140 recognizes alpha(2-3)sialylated, alpha(1-3)fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells, including the sequence Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNac beta-R (sialyl Lewis x). Recognition requires sialic acid, because cells expressing large amounts of Lewis x, but not sialyl Lewis x, do not interact with GMP-140. Although sialyl Lewis x is expressed by both myeloid HL-60 cells and CHO cells transfected with an alpha 1-3/4 fucosyltransferase, GMP-140 binds with significantly higher affinity to HL-60 cells. Thus, the sialyl Lewis x tetrasaccharide may require additional structural modifications or specific presentations in order for leukocytes in flowing blood to interact rapidly and with high affinity to GMP-140 on activated platelets or endothelium.  相似文献   

11.
The mannose receptor (MR) is a heavily glycosylated endocytic receptor that recognizes both mannosylated and sulfated ligands through its C-type lectin domains and cysteine-rich (CR) domain, respectively. Differential binding properties have been described for MR isolated from different sources, and we hypothesized that this could be due to altered glycosylation. Using MR transductants and purified MR, we demonstrate that glycosylation differentially affects both MR lectin activities. MR transductants generated in glycosylation mutant cell lines lacked most mannose internalization activity, but could internalize sulfated glycans. Accordingly, purified MR bearing truncated Man5-GlcNAc2 glycans (Man5 -MR) or non-sialylated complex glycans (SA0-MR) did not bind mannosylated glycans, but could recognize SO4-3-Gal in vitro. Additional studies showed that, although mannose recognition was largely independent of the oligomerization state of the protein, recognition of sulfated carbohydrates was mostly mediated by self-associated MR and that, in SA0-MR, there was a higher proportion of oligomeric MR. These results suggest that self-association could lead to multiple presentation of CR domains and enhanced avidity for sulfated sugars and that non-sialylated MR is predisposed to oligomerize. Therefore, the glycosylation of MR, terminal sialylation in particular, could influence its binding properties at two levels. (i) It is required for mannose recognition; and (ii) it modulates the tendency of MR to self-associate, effectively regulating the avidity of the CR domain for sulfated sugar ligands.  相似文献   

12.
GMP-140 is an integral membrane glycoprotein of apparent Mr = 140,000 located in secretory storage granules of platelets and vascular endothelial cells. When these cells are activated, GMP-140 redistributes from the membrane of the granules to the plasma membrane. To gain insight into the potential function of GMP-140, we examined aspects of its structure and biosynthesis. The amino acid composition of platelet GMP-140 revealed elevated numbers of cystinyl (6.1%), prolinyl (7.2%), and tryptophanyl (2.1%) residues. GMP-140 contained 28.8% carbohydrate by weight, distributed among N-acetylneuraminic acid, neutral sugar, and N-acetylglucosamine residues. Enzymatic removal of N-linked oligosaccarides reduced the protein's apparent Mr by more than 50,000. The biosynthesis of GMP-140 in HEL cells, which share biochemical features with megakaryocytes, was studied by pulse-chase labeling with [35S]cysteine followed by immunoprecipitation. HEL cells synthesized a heterogeneous GMP-140 precursor of 98-125 kDa which converted to a mature 140-kDa form within 40-60 min. Removal of high mannose oligosaccarides by endo-beta-N-acetylglucosaminidase H treatment reduced the apparent Mr of the precursor but not the mature protein. Tunicamycin-treated HEL cells synthesized three to four precursors of 80-92 kDa, suggesting the possibility of heterogeneity of GMP-140 at the protein level. Exposure of activated platelets to proteases followed by Western blotting indicated that most of the mass of GMP-140 was located on the extracytoplasmic side of the membrane. Our studies indicate that GMP-140 is a cysteine-rich, heavily glycosylated protein with a large extracytoplasmic domain. These features are compatible with a receptor function for the molecule when it is exposed on the surface of activated platelets and endothelial cells.  相似文献   

13.
The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.  相似文献   

14.
We have previously characterized a monoclonal antibody, S12, that binds only to activated platelets (McEver, R.P., and M.N. Martin, 1984, J. Biol. Chem., 259:9799-9804). It identifies a platelet membrane protein of Mr 140,000, which we have designated as GMP-140. Using immunocytochemical techniques we have now localized this protein in unstimulated and thrombin-stimulated platelets. Polyclonal antibodies to purified GMP-140 were used to enhance the sensitivity of detection. Nonpermeabilized, unstimulated platelets, incubated with anti-GMP-140 antibodies, and then with IgG-gold probes, showed very little label for GMP-140 along their plasma membranes. In contrast, thrombin-stimulated platelets exhibited at least a 50-fold increase in the amount of label along the plasma membrane. On frozen thin sections of unstimulated platelets we observed immunogold label along the alpha-granule membranes. We also employed the more sensitive technique of permeabilizing with saponin unstimulated platelets in suspension, and then incubating the cells with polyclonal anti-GMP-140 antibodies and Fab-peroxidase conjugate. Alpha-granule membranes showed heavy reaction product, but no other intracellular organelles were specifically labeled. These results demonstrate that GMP-140 is an alpha-granule membrane protein that is expressed on the platelet plasma membrane during degranulation.  相似文献   

15.
GMP-140 is a membrane glycoprotein located in secretory granules of platelets and endothelium. When these cells are activated by agonists such as thrombin, GMP-140 is rapidly translocated to the plasma membrane. GMP-140, along with ELAM-1 and the peripheral lymph node homing receptor, defines the selectin family of structurally related molecules that regulate interactions of leukocytes with the blood vessel wall. Each of these molecules contains an N-terminal lectin-like domain, followed by an EGF-like region, a series of consensus repeats related to those in complement-binding proteins, a transmembrane domain, and a short cytoplasmic tail. The genomic structures of the selectins suggest that they arose by duplication and modification of exons encoding specific structural domains. GMP-140 is a receptor for neutrophils and monocytes when it is expressed on activated platelets and endothelium. This property facilitates rapid adhesion of leukocytes to endothelium at regions of tissue injury as well as platelet-leukocyte interactions at sites of inflammation and hemorrhage. Like other leukocyte adhesion molecules, GMP-140 may also participate in pathologic inflammation, thrombosis, and tumor metastasis. Confirmation of such pathologic roles may lead to design of new drugs that block adhesive receptor function in human disease.  相似文献   

16.
Antiganglioside antibodies form an important component of the innate and adaptive B cell repertoire, where they provide antimicrobial activity through binding encapsulated bacterial glycans. In an aberrant role, they target peripheral nerve gangliosides to induce autoimmune nerve injury. An important characteristic of antiganglioside antibodies is their ability to selectively recognize highly defined glycan structures. Since sialylated and sulfated glycans often share lectin recognition patterns, we here explored the possibility that certain antiganglioside antibodies might also bind 3-O-sulfo-beta-D-galactosylceramide (sulfatide), an abundant constituent of plasma and peripheral nerve myelin, that could thereby influence any immunoregulatory or autoimmune properties. Out of 25 antiganglioside antibodies screened in solid phase assays, 20 also bound sulfatide (10(-5) to 10(-6) M range) in addition to their favored ganglioside glycan epitope ( approximately 10(-7) M range). Solution inhibition studies demonstrated competition between ganglioside and sulfatide, indicating close proximity or sharing of the antigen binding variable region domain. Sulfatide and 3-O-sulfo-beta-D-galactose were unique in having this property amongst a wide range of sulfated glycans screened, including 4- and 6-O-sulfo-beta-D-galactose analogues. Antiganglioside antibody binding to 3-O-sulfo-beta-D-galactose was highly dependent upon the spatial presentation of the ligand, being completely inhibited by conjugation to protein or polyacrylamide (PAA) matrices. Binding was also absent when sulfatide was incorporated into plasma membranes, including myelin, under conditions in which antibody binding to ganglioside was retained. These data demonstrate that sulfatide binding is a common property of antiganglioside antibodies that may provide functional insights into, and consequences for this component of the innate immune repertoire.  相似文献   

17.
GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism.  相似文献   

18.
The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that often exhibit distinct structural changes that modify their pore-forming activity. A soluble platelet aggregation factor from Streptococcus mitis (Sm-hPAF) was characterized and shown to be a functional CDC with an amino-terminal fucose-binding lectin domain. Sm-hPAF, or lectinolysin (LLY) as renamed herein, is most closely related to CDCs from Streptococcus intermedius (ILY) and Streptococcus pneumoniae (pneumolysin or PLY). The LLY gene was identified in strains of S. mitis, S. pneumoniae, and Streptococcus pseudopneumoniae. LLY induces pore-dependent changes in the light scattering properties of the platelets that mimic those induced by platelet aggregation but does not induce platelet aggregation. LLY monomers form the typical large homooligomeric membrane pore complex observed for the CDCs. The pore-forming activity of LLY on platelets is modulated by the amino-terminal lectin domain, a structure that is not present in other CDCs. Glycan microarray analysis showed the lectin domain is specific for difucosylated glycans within Lewis b (Le (b)) and Lewis y (Le (y)) antigens. The glycan-binding site is occluded in the soluble monomer of LLY but is apparently exposed after cell binding, since it significantly increases LLY pore-forming activity in a glycan-dependent manner. Hence, LLY represents a new class of CDC whose pore-forming mechanism is modulated by a glycan-binding domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号