首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Using RFLP markers, QTLs for tuber starch-content and tuber yield were mapped in two F1 populations derived from crossing non-inbred di-haploid potato breeding lines. QTLs were identified and mapped, based on both single-marker tests and interval analyses. A model specifically developed for interval QTL analysis in non-inbred plant species was successfully applied for the first time to experimental data. Results of both methods of QTL analysis were similar but not identical. QTLs for tuber starch-content and tuber yield were analysed in segregating populations K31 and LH in five and two environments, respectively. Population K31 was fully genotyped whereas population LH was selectively genotyped according to high and low tuber-starch content. Eighteen putative QTLs for tuber starch-content were identified on all 12 potato linkage groups and eight putative QTLs for tuber yield were identified on eight linkage groups. Twenty of twenty six putative QTLs were reproducibly detected in at least two environments and/or mapping populations. Few major QTLs for tuber starch-content were highly stable across environments but were detected in only one of the two mapping populations analysed. Most QTLs for tuber yield were linked with QTLs for tuber starch-content suggesting that the effects on both traits are controlled by the same genetic factors. The results are discussed with respect to marker-assisted selection in potato. Received: 9 March 1998 / Accepted: 29 April 1998  相似文献   

2.
Starch and sugar content of potato tubers are quantitative traits, which are models for the candidate gene approach for identifying the molecular basis of quantitative trait loci (QTL) in noninbred plants. Starch and sugar content are also important for the quality of processed products such as potato chips and French fries. A high content of the reducing sugars glucose and fructose results in inferior chip quality. Tuber starch content affects nutritional quality. Functional and genetic models suggest that genes encoding invertases control, among other things, tuber sugar content. The invGE/GF locus on potato chromosome IX consists of duplicated invertase genes invGE and invGF and colocalizes with cold-sweetening QTL Sug9. DNA variation at invGE/GF was analyzed in 188 tetraploid potato cultivars, which have been assessed for chip quality and tuber starch content. Two closely correlated invertase alleles, invGE-f and invGF-d, were associated with better chip quality in three breeding populations. Allele invGF-b was associated with lower tuber starch content. The potato invertase gene invGE is orthologous to the tomato invertase gene Lin5, which is causal for the fruit-sugar-yield QTL Brix9-2-5, suggesting that natural variation of sugar yield in tomato fruits and sugar content of potato tubers is controlled by functional variants of orthologous invertase genes.  相似文献   

3.
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid crop species, and this creates challenges for traditional line development and molecular breeding. Recent availability of a single-nucleotide polymorphism (SNP) array with 8303 features and software packages for linkage and association mapping in autotetraploid species present new opportunities for the identification of genomic regions that contribute to high-value traits in cultivated potato. A biparental tetraploid potato population was evaluated across three field seasons and storage trials in order to identify quantitative trait loci (QTL) for multiple tuber traits including fried chip color after 5.5–7.2 °C storage. Tetra-allelic dosage information was used to construct a genetic linkage map that covered 1041 cM and contained 2095 SNP markers with a median marker interval of 0.4 cM. A total of 41 QTL were identified for flower color, tuber yield, tuber number per plant, tuber weight, tuber size, and chip color after various storage regimes. Moderate effect QTL for chip color at 3 months were identified that co-localized with candidate genes vacuolar invertase (VInv), invertase inhibitor (INH2), and apoplastic invertase (Inv ap -b). A separate QTL for chip color after 6 months of storage was identified in the short arm of chromosome 2, and this locus may contribute to variation in senescent sweetening resistance. QTL for tuber weight, length, and width co-localized with a known QTL for plant maturity on chromosome 5. Genome-wide association mapping using a polyploid model detected the tuber size QTL and identified a number of candidate SNPs, but was unable to detect markers significantly associated with chip color.  相似文献   

4.
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll‐specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP‐glucose pyrophosphorylase in leaves. Both approaches make use of re‐routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6‐phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a ‘pull’ approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of ‘pull’ and ‘push’ approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.  相似文献   

5.
6.
7.
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.  相似文献   

8.
The metabolic function of the plastidic ATP/ADP transporter (AATP) in heterotrophic plastids was examined in transgenic potato plants that exhibited increased or decreased amounts of the protein. Altered mRNA levels correlated with activities of the plastidic ATP/ADP transporter. Potato tubers with decreased plastidic ATP/ADP transporter activities exhibited reduced starch contents whereas sense lines accumulated increased amounts of tuber starch. Starch from wild-type tubers had an amylose content of 18.8%, starch from antisense plants contained 11.5–18.0% amylose, whereas starch from sense plants had levels of 22.7–27.0%. The differences in physiological parameters were accompanied with altered tuber morphology. These changes are discussed with respect to the stromal ATP supply during starch biosynthesis.  相似文献   

9.
The pigmented enterobacterium Serratia marcescens, an opportunistic pathogen, shows a striking variation of its red color. Different strains differ greatly both in color and in the frequency with which they produce color variants. Within a strain, the variations occur at constant rates and are reversible. During an investigation of this phenomenon we observed that variation of a 39-kilodalton protein in S. marcescens 274 is closely associated with color variation. Using antibodies to this protein we identified it as being a component of the bacterial flagella. Variation of surface proteins often provides an organism with alternate offense-defense strategies for survival in a challenging environment. The pigment, in association with flagella, may provide such a function for S. marcescens.  相似文献   

10.
In plant pathosystems involving insect vectors, disease spread, incidence, and severity often depend on the density of the vector population and its rate of infectivity with the disease pathogen. The potato psyllid, Bactericera cockerelli (Sulc), has recently been associated with zebra chip (ZC), an emerging and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. "Candidatus Liberibacter solanacearum," a previously undescribed species of liberibacter has been linked to the disease and is transmitted to potato by B. cockerelli. Experiments were conducted under laboratory and field conditions to determine the impact of B. cockerelli density on ZC incidence, potato yield, and tuber processing quality. Insect densities ranging from one to 25 liberibacter-infective psyllids per plant were used during the experiments. Results showed that a single adult potato psyllid was capable of inoculating liberibacter to potato and causing ZC disease after a 72-h inoculation access period and was as damaging as 25 psyllids per plant. In addition, ZC-diseased plants showed a sharp reduction in tuber yield but the disease response was independent of the density of psyllids. Furthermore, both glucose and sucrose were found to have highly elevated concentrations in ZC-diseased potato tubers compared with noninfected ones and psyllid density did not vary the response. The high reducing sugar concentrations found in ZC-infected potato tubers are believed to be responsible for browning and reduced quality in processed ZC-infected tubers. This information could help ZC-affected potato producers in making effective management decisions for this serious disease.  相似文献   

11.
12.
Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77–13.01 and phenotype variations explained (PVE) from10.0–48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55–8.68 and explained 6.6–43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co‐localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits.  相似文献   

13.
Natural variation in salinity response, effects of population structure on growth and physiological traits and gene–trait association were examined in 56 global collections of diverse perennial ryegrass (Lolium perenne L.) accessions. Three population structure groups were identified with 66 simple sequence repeat markers, which on average accounted for 9 and 11% of phenotypic variation for the control and salinity treatment at 300 mm NaCl. Group 1 (10 accessions) had greater plant height, leaf dry weight and water content, chlorophyll index, K+ concentration and K+/Na+ than group 2 (39 accessions) and group 3 (7 accessions) under salinity stress, while group 3 had higher Na+ than groups 1 and 2. Eighty‐seven single nucleotide polymorphisms were detected from four partial candidate genes encoding aquaporin and Na+/H+ antiporter in both plasma and tonoplast membranes. Overall, rapid decay of linkage disequilibrium was observed within 500 bp. Significant associations were found between the putative LpTIP1 and Na+ for the control and between the putative LpNHX1 and K+/Na+ under the control and salinity treatments after controlling population structure. These results indicate that population structure influenced phenotypic traits, and allelic variation in LpNHX1 may affect salinity tolerance of perennial ryegrass.  相似文献   

14.
15.
16.
Gene StGA20ox1 encoding potato GA 20-oxidase is expressed to relatively high levels in leaves and regulated by daylength. To investigate whether this gene is involved in photoperiodic regulation of tuber formation, we have obtained transgenic potato plants expressing sense and antisense copies of the StGA20ox1 cDNA. Over-expression of this cDNA resulted in taller plants that required a longer duration of a short day photoperiod (SD) to tuberize. Tubers from these plants had a decreased time of dormancy and developed sprouts with elongated internodes. Plants expressing antisense copies of the StGA20ox1 cDNA had shorter stems, a decreased length of the internodes and tuberized earlier than control plants, showing increased tuber yields. Antisense inhibition of this gene had no visible effect on the time of dormancy of the tubers, although at the end of dormancy these formed sprouts with shortened internodes. Decreased levels of endogenous GA20 and GA1 were detected in the apex and first leaves of the antisense lines. These results demonstrate the involvement of the GA 20-oxidase activity encoded by StGA20ox1 in the control of stem elongation and in tuber induction but not in tuber dormancy, indicating that the latter may be regulated by another member of the gene family.  相似文献   

17.
Muscle fiber hypertrophic growth can lead to an increase in the myonuclear domain (MND), leading to greater diffusion distances within the cytoplasmic volume that each nucleus services. We tested the hypothesis that hypertrophic growth in the white muscle of fishes was associated with increases in the mean DNA content of nuclei, which may be a strategy to offset increasing diffusion constraints. DAPI-stained chicken erythrocytes standards and image analysis were used to estimate nuclear DNA content in erythrocytes and muscle fibers from 17 fish species. Mean diploid (2C) values in fish erythrocytes ranged from 0.78 to 7.2 pg. Erythrocyte 2C values were used to determine ploidy level in muscle tissue of small and large size classes of each species. Within each species, mean muscle fiber diameter was greater in the large size class than the small size class, and MND was significantly greater in larger fibers for 11 of the 17 species. Nuclear DNA content per species in muscle ranged from 2 to 64C. Fiber-size dependent increases in ploidy were observed in nine species, which is consistent with our hypothesis and indicates that endoreduplication is occurring during fiber growth. However, two species exhibited significantly lower ploidy in the larger size class, and the mechanistic basis and potential advantage of this ploidy shift is unclear. These results suggest that increases in ploidy may be a common mechanism to compensate for increases in MND associated with fiber hypertrophy in fishes, although it is likely that other factors also affect ploidy changes that occur in muscle during animal growth.  相似文献   

18.

Background  

Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial ND5 deletion recently discovered to segregate among wild populations of the soil nematode, Caenorhabditis briggsae. The normal product of ND5 is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.  相似文献   

19.
Both the early environment and genetic variation may affect DNA methylation, which is one of the major molecular marks of the epigenome. The combined effect of these factors on a well-defined locus has not been studied to date. We evaluated the association of periconceptional exposure to the Dutch Famine of 1944-45, as an example of an early environmental exposure, and single nucleotide polymorphisms covering the genetic variation (tagging SNPs) with DNA methylation at the imprinted IGF2/H19 region, a model for an epigenetically regulated genomic region. DNA methylation was measured at five differentially methylated regions (DMRs) that regulate the imprinted status of the IGF2/H19 region. Small but consistent differences in DNA methylation were observed comparing 60 individuals with periconceptional famine exposure with unexposed same-sex siblings at all IGF2 DMRs (P(BH)<0.05 after adjustment for multiple testing), but not at the H19 DMR. IGF2 DMR0 methylation was associated with IGF2 SNP rs2239681 (P(BH) = 0.027) and INS promoter methylation with INS SNPs, including rs689, which tags the INS VNTR, suggesting a mechanism for the reported effect of the VNTR on INS expression (P(BH) = 3.4 × 10(-3)). Prenatal famine and genetic variation showed similar associations with IGF2/H19 methylation and their contributions were additive. They were small in absolute terms (<3%), but on average 0.5 standard deviations relative to the variation in the population. Our analyses suggest that environmental and genetic factors could have independent and additive similarly sized effects on DNA methylation at the same regulatory site.  相似文献   

20.
The effect of foliar and soil applied paclobutrazol on potato were examined under non-inductive condition in a greenhouse. Single stemmed plants of the cultivar BP1 were grown at 35(±2)/20(±2) °C day/night temperatures, relative humidity of 58%, and a 16 h photoperiod. Twenty-eight days after transplanting paclobutrazol was applied as a foliar spray or soil drench at rates of 0, 45.0, 67.5, and 90.0 mg active ingredient paclobutrazol per plant. Regardless of the method of application paclobutrazol increased chlorophyll a and b contents of the leaf tissue, delayed physiological maturity, and increased tuber fresh mass, dry matter content, specific gravity, dormancy period of the tubers. Paclobutrazol reduced the number of tubers per plant. A significant interaction between rates and methods of paclobutrazol application were observed with respect to plant height and tuber crude protein content. Foliar application gave a higher rate of net photosynthesis than the soil drench. Paclobutrazol significantly reduced total leaf area and increased assimilate partitioning to the tubers. The study clearly showed that paclobutrazol is effective to suppress excessive vegetative growth, favor assimilation to the tubers, increase tuber yield, improve tuber quality and extend tuber dormancy of potato grown in high temperatures and long photoperiods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号