首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Recently, it was found that myosin generating very fast cytoplasmic streaming in Chara corallina has very high ATPase activity. To estimate the energy consumed by this myosin, its concentration in the internodal cells of C. corallina was determined by quantitative immunoblot. It was found that the concentration of Chara myosin was considerably high (200 nM) and the amount of ATP consumed by this myosin would exceed that supplied by dark respiration if all myosin molecules were fully activated by the interaction with actin. These results and model calculations suggested that the energy required to generate cytoplasmic streaming is very small and only one-hundredth of the existing myosin is enough to maintain the force for the streaming in the Chara cell.  相似文献   

2.
A long alpha-helix in myosin head constitutes a lever arm together with light chains. It is known from X-ray crystallographic studies that the first three turns of this lever arm alpha-helix are inserted into the converter region of myosin. We previously showed that chimeric Chara myosin in which the motor domain of Chara myosin was connected to the lever arm alpha-helix of Dictyostelium myosin had motility far less than that expected for the motor domain of Chara myosin. Here, we replaced the inserted three turns of alpha-helix of Dictyostelium myosin with that of the Chara myosin and found that the replacement enhanced the motility 2.6-fold without changing the ATPase activity so much. The result clearly showed the importance of interaction between the converter region and the lever arm alpha-helix for the efficient motility of myosin.  相似文献   

3.
Endoplasmic streaming of characean cells of Nitella or Chara is known to be in the range 30-100 microm/second. The Chara myosin extracted from the cells and fixed onto a glass surface was found to move muscle actin filaments at a velocity of 60 microm/second. This is ten times faster than that of skeletal muscle myosin (myosin II). In this study, the displacement caused by single Chara myosin molecules was measured using optical trapping nanometry. The step size of Chara myosin was approximately 19nm. This step size is longer than that of skeletal muscle myosin but shorter than that of myosin V. The dwell time of the steps was relatively long, and this most likely resulted from two rate-limiting steps, the dissociation of ADP and the binding of ATP. The rate of ADP release from Chara myosin after the completion of the force-generation step was similar to that of myosin V, but was considerably slower than that of skeletal muscle myosin. The 19nm step size and the dwell time obtained could not explain the fast movement. The fast movement could be explained by the load-dependent release of ADP. As the load imposed on the myosin decreased, the rate of ADP release increased. We propose that the interaction of Chara myosin with an actin filament resulted in a negative load being imposed on other myosin molecules interacting with the same actin filament. This resulted in an accelerated release of ADP and the fast sliding movement.  相似文献   

4.
In Characean cells endoplasmic streaming stops upon membrane depolarization accompanied by Ca(2+) entry. We investigated the mechanism of this cessation of endoplasmic streaming by reconstituting the vesicle movement in vitro. In a living cell of Chara corallina, there are a number of vesicles moving along actin cables. Vesicles in the endoplasm squeezed out of the cell into a medium containing Mg-ATP showed directional movements under a dark field microscope. When the extracted endoplasm was treated with 20 nM okadaic acid, vesicles showed only movements like the Brownian motion. When it was treated with 50 nM staurosporine, directional movements of vesicles were activated. These movements were analyzed by image processing of videomicroscopic records. Vesicle movements along F-actin filaments were also observed by merging both images of the same field by dark field microscopy and fluorescence microscopy, indicating that myosin on the vesicle surface was responsible for vesicle movements. We also examined the effects of okadaic acid and staurosporine on in vitro sliding of F-actin on Chara myosin. When Chara myosin was treated with 20 nM okadaic acid in the cell extract, the number of sliding F-actin filaments was greatly reduced. In contrast, it increased when Chara myosin was treated with 50 nM staurosporine. In addition, Chara myosin treated with protein kinase C greatly diminished its motility. These results suggest that inactivation of Chara myosin via its phosphorylation is responsible for cessation of endoplasmic streaming.  相似文献   

5.
Cytoplasmic streaming in characean algae is thought to be generated by interaction between subcortical actin bundles and endoplasmic myosin. Most of the existing evidence supporting this hypothesis is of a structural rather than functional nature. To obtain evidence bearing on the possible function of actin and myosin in streaming, we used perfusion techniques to introduce a number of contractile and related proteins into the cytoplasm of streaming Chara cells. Exogenous actin added at concentrations as low as 0.1 mg/ml is a potent inhibitor of streaming. Deoxyribonuclease I (DNase I), an inhibitor of amoeboid movement and fast axonal transport, does not inhibit streaming in Chara. Fluorescein-DNase I stains stress cables and microfilaments in mammalian cells but does not bind to Chara actin bundles, thus suggesting that the lack of effect on streaming is due to a surprising lack of DNase I affinity for Chara actin bundles. Heavy meromyosin (HMM) does not inhibit streaming, but fluorescein-HMM (FL-HMM), having a partially disabled EDTA ATPase, does. Quantitative fluorescence micrography provides evidence that inhibition of streaming by FL-HMM may be due to a tendency for FL-HMM to remain bound to Chara actin bundles even in the presence of MgATP. Perfusion with various control proteins, including tubulin, ovalbumin, bovine serum albumin, and irrelevant antibodies, does not inhibit streaming. These results support the hypothesis that actin and myosin function to generate cytoplasmic streaming in Chara.  相似文献   

6.
Chara myosin, two-headed plant myosin belonging to class XI, slides F-actin at maximally 60 microm s(-1). To elucidate the mechanism of this fast sliding, we extensively investigated its mechanochemical properties. The maximum actin activated ATPase activity, Vmax, was 21.3 s(-1) head(-1) in a solution, but when myosin was immobilized on the surface, its activity was 57.6 s(-1) head(-1) at 2 mg ml(-1) of F-actin. The sliding velocity and the actin activated ATPase activity were greatly inhibited by ADP, suggesting that ADP dissociation was the rate limiting step. With the extensive assay of motility by varying the surface density, the duty ratio of Chara myosin was found to be 0.49-0.44 from velocity measurements and 0.34 from the landing rate analysis. At the surface density of 10 molecules microm(-2), Chara myosin exhibited pivot movement under physiological conditions. Based on the results obtained, we will discuss the sliding mechanism of Chara myosin according to the working stroke model in terms of its physiological aspects. aspects.  相似文献   

7.
Cellular and intracellular motile events in plants are susceptible to SH reagents such as N-ethylmaleimide (NEM). It has long been believed that the target of the reagent is myosin. We compared the effect of NEM on the motile and ATPase activities of skeletal muscle myosin with that on plant myosin using characean algal myosin. It was found that the motile activity of myosin prepared from NEM-treated C. corallina decreased to a level accountable for the decrease in the velocity of cytoplasmic streaming but it was also found that Chara myosin was far less susceptible to NEM than skeletal muscle myosin.  相似文献   

8.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

9.
Binding of chara Myosin globular tail domain to phospholipid vesicles   总被引:1,自引:0,他引:1  
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.  相似文献   

10.
We succeeded in expressing a chimeric myosin that comprises the motor domain of characean algal myosin, (the fastest known motor protein), and the neck and tail domains of Dictyostelium myosin II. Although the chimeric myosin showed an ATPase activity comparable to that of muscle myosin (15 times higher than that of the wild-type Dictyostelium myosin II), the motile activity of the chimera was only 1.3 times higher than that of the wild-type. However, this is the first chimeric myosin that showed motile activity faster than at least one of the parent myosins. It was suggested, therefore, that the motor domain of Chara myosin has the potential for performing fast sliding movement.  相似文献   

11.
We studied the effects of 2,3-butanedione monoxime (BDM) on the cytoplasmic streaming of Chara corallina and on the motility of myosin prepared from the same plant to examine whether this reagent really affects the plant class XI myosin. It was found that BDM inhibited both cytoplasmic streaming and the motility of myosin at a very similar concentration range (10-100 mM). BDM introduced directly into tonoplast-free cells also inhibited cytoplasmic streaming. These results suggested that effect of BDM on cytoplasmic streaming was exerted through myosin and not through ion channels at least in Chara corallina, though a very high concentration of BDM was required.  相似文献   

12.
The human CD98 heavy chain (CD98hc) offers a promising biomedical target both for tumor therapy and for drug delivery to the brain. We have previously developed a cognate Anticalin protein with picomolar affinity and demonstrated its effectiveness in a xenograft animal model. Due to the lack of cross‐reactivity with the murine ortholog, we now report the development and X‐ray structural analysis of an Anticalin with high affinity toward CD98hc from mouse. This binding protein recognizes the same protruding epitope loop—despite distinct structure—in the membrane receptor ectodomain as the Anticalin selected against human CD98hc. Thus, this surrogate Anticalin should be useful for the preclinical assessment of CD98hc targeting in vivo and support the translational development for medical application in humans.  相似文献   

13.

Background

There is evidence that the actin-activated ATP kinetics and the mechanical work produced by muscle myosin molecules are regulated by two surface loops, located near the ATP binding pocket (loop 1), and in a region that interfaces with actin (loop 2). These loops regulate force and velocity of contraction, and have been investigated mostly in single molecules. There is a lack of information of the work produced by myosin molecules ordered in filaments and working cooperatively, which is the actual muscle environment.

Methods

We use micro-fabricated cantilevers to measure forces produced by myosin filaments isolated from mollusk muscles, skeletal muscles, and smooth muscles containing variations in the structure of loop 1 (tonic and phasic myosins). We complemented the experiments with in-vitro assays to measure the velocity of actin motility.

Results

Smooth muscle myosin filaments produced more force than skeletal and mollusk myosin filaments when normalized per filament overlap. Skeletal muscle myosin propelled actin filaments in a higher sliding velocity than smooth muscle myosin. The values for force and velocity were consistent with previous studies using myosin molecules, and suggest a close correlation with the myosin isoform and structure of surface loop 1.

General significance

The technique using micro-fabricated cantilevers to measure force of filaments allows for the investigation of the relation between myosin structure and contractility, allowing experiments to be conducted with an array of different myosin isoforms. Using the technique we observed that the work produced by myosin molecules is regulated by amino-acid sequences aligned in specific loops.  相似文献   

14.
The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k(-)(A)) with no significant change in the rate for actin binding (k(+A)). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actin-myosin interface or for the modulation of actomyosin ATPase activity.  相似文献   

15.
The processive motor myosin V has a high affinity for actin in the weak binding states when compared with non-processive myosins. Here we test whether this feature is essential for myosin V to walk processively along an actin filament. The net charge of loop 2, a surface loop implicated in the initial weak binding between myosin and actin, was increased or decreased to correspondingly change the affinity of myosin V for actin in the weak binding state, without changing the velocity of movement. Processive run lengths of single molecules were determined by total internal reflection fluorescence microscopy. Reducing the net positive charge of loop 2 significantly decreased both the affinity of myosin V for actin and the processive run length. Conversely, the addition of positive charge to loop 2 increased actin affinity and processive run length. We hypothesize that a high affinity for actin allows the detached head of a stepping myosin V to find its next actin binding site more quickly, thus decreasing the probability of run termination.  相似文献   

16.
It has been reported that catch and striated muscle myosin heavy chains of scallop are generated through alternative splicing from a single gene [Nyitray et al. (1994) Proc. Natl. Acad. Sci. USA 91, 12686-12690]. They suggested that the catch muscle type myosin was expressed in various tissues of scallop, including the gonad, heart, foot, and mantle. However, there have been no reports of the primary structure of myosin from tissues other than the adductor muscles. In this study, we isolated a cDNA encoding the motor domain of myosin from the mantle tissue of scallop (Patinopecten yessoensis), and determined its nucleotide sequence. Sequence analysis revealed that mantle myosin exhibited 65% identity with Drosophila non muscle myosin, 60% with chicken gizzard smooth muscle myosin, and 44% with scallop striated muscle myosin. The mantle myosin has inserted sequences in the 27 kDa domain of the head region, and has a longer loop 1 structure than those of scallop striated and catch muscle myosins. Phylogenetic analysis suggested that the mantle myosin is classified as a smooth/nonmuscle type myosin. Western blot analysis with antibodies produced against the N-terminal region of the mantle myosin revealed that this myosin was specifically expressed in the mantle pallial cell layer consisting of nonmuscle cells. Our results show that mantle myosin is classified as a nonmuscle type myosin in scallop.  相似文献   

17.
Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid sequence identity with a 723-aa protein from mouse brain reported to be a glutamic acid decarboxylase. The neck region of chicken myosin-V, which contains the IQ-motifs, was demonstrated to contain the binding sites for CM by analyzing CM binding to bacterially expressed fusion proteins containing the head, neck, and tail domains. Immunolocalization of myosin-V in brain and in cultured cells revealed an unusual distribution for this myosin in both neurons and nonneuronal cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
One of the putative actin-binding sites of Dictyostelium myosin II is the beta-strand-turn-beta-strand structure (Ile(398)-Leu-Ala-Gly-Arg-Asp(403)-Leu-Val(405)), the "myopathy loop, " which is located at the distal end of the upper 50-kDa subdomain and next to the conserved arginine (Arg(397)), whose mutation in human cardiac myosin results in familial hypertrophic cardiomyopathy. The myopathy loop contains the TEDS residue (Asp(403)), which is a target of the heavy-chain kinase in myosin I. Moreover, the loop contains a cluster of hydrophobic residues (Ile(398), Leu(399), Leu(404), and Val(405)), whose side chains are fully exposed to the solvent. In our study, the myopathy loop was deleted from Dictyostelium myosin II to investigate its functional roles. The mutation abolished hydrophobic interactions of actin and myosin in the strong binding state during the ATPase cycle. Association of the mutant myosin and actin was maintained only through ionic interactions under these conditions. Without strong hydrophobic interactions, the mutant myosin still exhibited motor functions, although at low levels. It is likely that the observed defects resulted mainly from a loss of the cluster of hydrophobic residues, since replacement of Asp(403) or Arg(402) with alanine generated a mutant with less severe or no defects compared with those of the deletion mutant.  相似文献   

19.
4F2hc (CD98hc) is a multifunctional type II membrane glycoprotein involved in amino acid transport and cell fusion, adhesion, and transformation. The structure of the ectodomain of human 4F2hc has been solved using monoclinic (Protein Data Bank code 2DH2) and orthorhombic (Protein Data Bank code 2DH3) crystal forms at 2.1 and 2.8 A, respectively. It is composed of a (betaalpha)(8) barrel and an antiparallel beta(8) sandwich related to bacterial alpha-glycosidases, although lacking key catalytic residues and consequently catalytic activity. 2DH3 is a dimer with Zn(2+) coordination at the interface. Human 4F2hc expressed in several cell types resulted in cell surface and Cys(109) disulfide bridge-linked homodimers with major architectural features of the crystal dimer, as demonstrated by cross-linking experiments. 4F2hc has no significant hydrophobic patches at the surface. Monomer and homodimer have a polarized charged surface. The N terminus of the solved structure, including the position of Cys(109) residue located four residues apart from the transmembrane domain, is adjacent to the positive face of the ectodomain. This location of the N terminus and the Cys(109)-intervening disulfide bridge imposes space restrictions sufficient to support a model for electrostatic interaction of the 4F2hc ectodomain with membrane phospholipids. These results provide the first crystal structure of heteromeric amino acid transporters and suggest a dynamic interaction of the 4F2hc ectodomain with the plasma membrane.  相似文献   

20.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号