首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F Boulay  L Mery  M Tardif  L Brouchon  P Vignais 《Biochemistry》1991,30(12):2993-2999
A cDNA clone encoding the human C5a anaphylatoxin receptor has been isolated by expression cloning from a CDM8 expression library prepared from mRNA of human myeloid HL-60 cells differentiated to the granulocyte phenotype with dibutyryladenosine cyclic monophosphate. The cDNA clone was able to transfer to COS-7 cells the capacity to specifically bind iodinated human recombinant C5a. The cDNA was 2.3 kb long, with an open reading frame encoding a 350-residue polypeptide. Cross-linking of iodinated C5a to the plasma membrane of transfected COS cells revealed a complex with an apparent molecular mass of 52-55 kDa, similar to that observed for the constitutively expressed receptor in differentiated HL-60 cells or human neutrophils. Although differentiated HL-60 cells display a single class of binding sites, with a dissociation constant of approximately 800-900 pM, the C5a-R cDNA, expressed in COS cells, generates both high-affinity (1.7 nM) and low-affinity (20-25 nM) receptors. Sequence comparison established that the degree of sequence identity between the C5a receptor and the N-formylpeptide receptor is 34%.  相似文献   

2.
The anaphylatoxin, complement 5a (C5a), plays a key role in mediating various inflammatory reactions following complement activation. Several investigators have reported that C5a receptor (C5aR) is expressed in non-myeloid cells under certain conditions or in different cell lines. In our study, the abundance of C5aR-positive myeloid cells in rats depended on the organs examined. C5aR was usually expressed at the site of exposure to pathogens, such as in salivary gland or lung, and was up-regulated in liver in the inflammatory state induced by lipopolysaccharide (LPS) administration. Furthermore, the increased expression of C5aR antigen was not accompanied by an increase in C5aR mRNA in Kupffer cells following LPS challenge.  相似文献   

3.
Using homology searching of public databases with a metabotropic glutamate receptor sequence from Caenorhabditis elegans, two novel protein sequences (named RAIG-2 (HGMW-approved symbol GPRC5B) and RAIG-3 (HGMW-approved symbol GPRC5C) were identified containing seven putative transmembrane domains characteristic of G-protein-coupled receptors (GPCRs). RAIG-2 and RAIG-3 encode open reading frames of 403 and 442 amino acid polypeptides, respectively, and show 58% similarity to the recently identified retinoic acid-inducible gene-1 (RAIG-1, HGMW-approved symbol RAI3). Analysis of the three protein sequences places them within the type 3 GPCR family, which includes metabotropic glutamate receptors, GABA(B) receptors, calcium-sensing receptors, and pheromone receptors. However, in contrast to other type 3 GPCRs, RAIG-1, RAIG-2, and RAIG-3 have only short N-terminal domains. RAIG-2 and RAIG-3 cDNA sequences were cloned into the mammalian expression vector pcDNA3 with c-myc or HA epitope tags inserted at their N-termini, respectively. Transient transfection experiments in HEK239T cells using these constructs demonstrated RAIG-2 and RAIG-3 expression at the cell surface. Distribution profiles of mRNA expression obtained by semiquantitative Taq-Man PCR analysis showed RAIG-2 to be predominantly expressed in human brain areas and RAIG-3 to be predominantly expressed in peripheral tissues. In addition, expression of RAIG-2 and RAIG-3 mRNA was increased following treatment with all-trans-retinoic acid in a manner similar to that previously described for RAIG-1. Finally, RAIG-2 was mapped to chromosome 16p12 (D16S405-D16S3045) and RAIG-3 to chromosome 17q25 (D17S1352-D17S785). These results suggest that RAIG-1, RAIG-2, and RAIG-3 represent a novel family of retinoic acid-inducible receptors, most closely related to the type 3 GPCR subfamily, and provide further evidence for a linkage between retinoic acid and G-protein-coupled receptor signal transduction pathways.  相似文献   

4.
The anaphylatoxins are potent, complement-derived low m.w. proteins that bind to specific seven-transmembrane receptors to elicit and amplify a variety of inflammatory reactions. C5a is the most potent of these phlogistic peptides and is a strong chemoattractant for neutrophils and macrophages/monocytes. Although lower vertebrates possess complement systems that are believed to function similarly to those of mammals, anaphylatoxin receptors have not previously been characterized in any nonmammalian vertebrate. To study the functions of C5a in teleost fish, we generated recombinant C5a of the rainbow trout, Oncorhynchus mykiss (tC5a), and used fluoresceinated tC5a (tC5aF) and flow cytometry to identify the C5a receptor (C5aR) on trout leukocytes. Granulocytes/Macrophages present in cell suspensions of the head kidney (HKL), the main hemopoietic organ in teleosts, showed a univariate type of receptor expression, whereas those from the peripheral blood demonstrated either a low or high level of expression. The binding of tC5aF was inhibited by excess amounts of unlabeled tC5a or tC5a(desArg), demonstrating that sites other than the C-terminal of tC5a interact with the C5aR. Both tC5a and tC5a(desArg) were able to induce chemotactic responses in granulocytes in a concentration-dependent manner, but the desArg derivative was at least 10-fold less active. Homologous desensitization occurred after HKL were exposed to continuous or high concentrations of tC5a, with a loss of tC5aF binding and an 80% reduction in chemotactic responses toward tC5a. Pertussis toxin reduced the migration of HKL toward tC5a by 40%, suggesting only a partial involvement of pertussis toxin-sensitive G(i) proteins in tC5a-mediated chemotaxis.  相似文献   

5.
Rabiet MJ  Huet E  Boulay F 《Biochimie》2007,89(9):1089-1106
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.  相似文献   

6.
This study presents the 3D model of the complex between the anaphylatoxin C5a and its specific receptor, C5aR. This is the first 3D model of a G-protein-coupled receptor (GPCR) complex with a peptide ligand deduced by a molecular modeling procedure analyzing various conformational possibilities of the extracellular loops and the N-terminal segment of the GPCR. The modeling results indicated two very different ways of interacting between C5a and C5aR at the two interaction sites suggested earlier based on the data of site-directed mutagenesis. Specifically, C5a and C5aR can be involved in "mutual-induced fit", where the interface between the molecules is determined by both the receptor and the ligand. The rigid core of the C5a ligand selects the proper conformations of the highly flexible N-terminal segment of C5aR (the first interaction site). At the same time, the binding conformation of the flexible C-terminal fragment of C5a is selected by well-defined interactions with the TM region of the C5aR receptor (the second interaction site). The proposed 3D model of C5a/C5aR complex was built without direct use of structural constraints derived from site-directed mutagenesis reserving those data for validation of the model. The available data of site-directed mutagenesis of C5a and C5aR were successfully rationalized with the help of the model. Also, the modeling results predicted that the full-length C5a and C5a-des74 metabolite would have different binding modes with C5aR. Modeling approaches employed in this study are readily applicable for studies of molecular mechanisms of binding of other polypeptide ligands to their specific GPCRs.  相似文献   

7.
The C5a-anaphylatoxin which is generated by limited proteolysis upon activation of the fifth component of complement may be induced by the classical, the alternative or the lectin pathway. C5a has been shown, under normal conditions, to induce the release of prostanoids from Kupffer cells (KC) and hepatic stellate cells (HSC) and thereby indirectly to increase glucose output from hepatocytes (HC). A direct action of C5a on HC would require the expression of the specific C5a receptor (C5aR). In studies using quantitative RT-PCR it was shown that non-stimulated HC lack C5aR, in contrast to KC, HSC and sinusoidal endothelial cells (SEC) all of which contained mRNA for the C5aR in decreasing amounts. FACS analyses, immunohisto- and immunocytochemistry as well as functional analyses confirmed the results of the RT-PCR assays. Under inflammatory situations the C5aR was found to be upregulated in various organs and tissues which included the liver. Interleukin-6 (IL-6) as a main inflammatory mediator in the liver induced a de novo expression of functional C5aR in HC in-vitro and in-vivo. In contrast, LPS failed to induce C5aR directly in cultured HC in-vitro but induced C5aR in HC in vivo and in co-cultures of HC and KC which release IL-6 upon stimulation with LPS. So far, the only known effector function of C5a on HSC was the induction of prostanoid release. In an approach to reveal new functions of C5aR in HSC, the cells responsible for liver fibrosis, it could be shown that C5a upregulated fibronectin-specific mRNA five-fold whereas entactin, collagen IV and the structure protein smooth muscle actin were not affected. In addition, C5a did not upregulate specific mRNA for the profibrotic cytokine TGF-beta1 in either isolated KC or HSC. Thus, C5a alone appears to have only a limited role in the induction of liver fibrosis.  相似文献   

8.
In transfected cells and non-neuronal tissues many G-protein-coupled receptors activate p44/42 MAP kinase (ERK), a kinase involved in both hippocampal synaptic plasticity and learning and memory. However, it is not clear to what degree these receptors couple to ERK in brain. G(s)-coupled beta-adrenergic receptor activation of ERK in neurons is critical in the regulation of synaptic plasticity in area CA1 of the hippocampus. In addition, alpha(1)- and alpha(2)-adrenergic receptors, present in CA1, could potentially activate ERK. We find that, like the beta-adrenergic receptor, the G(q)-coupled alpha(1)AR activates ERK in adult mouse CA1. However, activation of the G(i/o)-coupled alpha(2)AR does not activate ERK, nor does activation of a homologous G(i/o)-coupled receptor enriched in adult mouse CA1, the 5HT(1A) receptor. In contrast, the nonhomologous G(i/o)-coupled gamma-aminobutyric acid type B receptor does activate ERK in adult mouse CA1. Surprisingly, activation of alpha(2)ARs in CA1 from immature animals where basal phospho-ERK is low induces ERK phosphorylation. These data suggest that although most G-protein-coupled receptor subtypes activate ERK in non-neuronal cells, the coupling of G(i/o) to ERK is tightly regulated in brain.  相似文献   

9.
10.
Characterization of a receptor for C5a anaphylatoxin on human eosinophils   总被引:12,自引:0,他引:12  
The complement anaphylatoxin peptide C5a is well known to activate human polymorphonuclear leukocytes through receptor-mediated processes. C5a has also been reported to activate eosinophils for both chemotaxis and hexose uptake. We characterized the receptor molecule for human C5a on human eosinophils and compared it with the receptor on human neutrophils. At 4 degrees C, uptake of 1 nM 125I-C5a reaches equilibrium within 10 min on both cell types. Binding of 125I-C5a occurs over a concentration range comparable to that which stimulates lysosomal enzyme release and hexose uptake in both cell types. Scatchard analyses of the data indicate the presence of two receptor populations on eosinophils; a high affinity receptor with 15,000-20,000 sites/cell and a Kd of 3.1 +/- 0.6 x 10(-11) M, and a low affinity receptor with approximately 375,000 sites/cell and a Kd of 1 x 10(-7) M. Parallel experiments with neutrophils indicate the presence of a single receptor population with approximately 90,000 sites/cell and a Kd of 4.8 +/- 0.1 x 10(-10)M. The eosinophil receptor molecule was further characterized by covalently cross-linking 125I-C5a to cells followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the solubilized material. Autoradiography indicates the presence of a dominant C5a-eosinophil receptor complex with an apparent mass of 60-65 kDa. The corresponding neutrophil-C5a receptor complex has an apparent mass of 50-52 kDa as observed by others. When the cross-linked 125I-C5a-receptor complex was treated with cyanogen bromide, different patterns were observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis for neutrophils and eosinophils. Thus, human eosinophils have a receptor for C5a anaphylatoxin which appears to be distinct from the C5a receptor present on human neutrophils.  相似文献   

11.
The pharmacophore of the human C5a anaphylatoxin.   总被引:1,自引:2,他引:1       下载免费PDF全文
We have determined which amino acids contribute to the pharmacophore of human C5a, a potent inflammatory mediator. A systematic mutational analysis of this 74-amino acid protein was performed and the effects on the potency of receptor binding and of C5a-induced intracellular calcium ion mobilization were measured. This analysis included the construction of hybrids between C5a and the homologous but unreactive C3a protein and site-directed mutagenesis. Ten noncontiguous amino acids from the structurally well-defined 4-helix core domain (amino acids 1-63) and the C-terminal arginine-containing tripeptide were found to contribute to the pharmacophore of human C5a. The 10 mostly charged amino acids from the core domain generally made small incremental contributions toward binding affinity, some of which were independent. Substitutions of the C-terminal amino acid Arg 74 produced the largest single effect. We also found the connection between these 2 important regions to be unconstrained.  相似文献   

12.
13.
 A polymorphism was identified in the coding region of the human C5a anaphylatoxin receptor gene leading to C to T transition at nucleotide position 450 (a silent substitution in the Ala150 codon, GCC to GCT). Its distribution was studied in a population of healthy volunteers from the Québec city region (prevalence of 2.8%) and among patients with end-stage renal failure who had previously undergone renal graft (prevalence 1.4%, not significantly different from that of the control group). This new marker provides a valuable tool to assess the risk for putative C5a-associated disorders with genetic determinism. Received: 20 November 1998 / Revised: 24 February 1999  相似文献   

14.
The family of genes encoding G-protein-coupled dopamine receptors continues to grow with the recent cloning of a fifth member. The availability of these clones has revolutionized the dopamine receptor field. Expression of individual dopamine receptors is permitting the detailed analysis of their pharmacology and coupling to second messenger systems, while probes based on the receptors' nucleotide sequences are being used to gain new insights into their tissue distribution and genetics.  相似文献   

15.
Lysophosphatidic acid (LPA), together with sphingosine 1-phosphate, is a bioactive lipid mediator that acts on G-protein-coupled receptors to evoke multiple cellular responses, including Ca(2+) mobilization, modulation of adenylyl cyclase, and mitogen-activated protein (MAP) kinase activation. In this study, we isolated a human cDNA encoding a novel G-protein-coupled receptor, designated EDG7, and characterized it as a cellular receptor for LPA. The amino acid sequence of the EDG7 protein is 53.7 and 48.8% identical to those of the human functional LPA receptors EDG2 and EDG4, respectively, previously identified. LPA (oleoyl) but not other lysophospholipids induced an increase in the [Ca(2+)](i) of EDG7-overexpressing Sf9 cells. Other LPA receptors, EDG4 but not EDG2, transduced the Ca(2+) response by LPA when expressed in Sf9 cells. LPAs with an unsaturated fatty acid but not with a saturated fatty acid induced an increase in the [Ca(2+)](i) of EDG7-expressing Sf9 cells, whereas LPAs with both saturated and unsaturated fatty acids elicited a Ca(2+) response in Sf9 cells expressing EDG4. In EDG7- or EDG4-expressing Sf9 cells, LPA stimulated forskolin-induced increase in intracellular cAMP levels, which was not observed in EDG2-expressing cells. In PC12 cells, EDG4 but not EDG2 or EDG7 mediated the activation of MAP kinase by LPA. Neither the EDG7- nor EDG4-transduced Ca(2+) response or cAMP accumulation was inhibited by pertussis toxin. In conclusion, the present study demonstrates that EDG7, a new member of the EDG family of G-protein-coupled receptors, is a specific LPA receptor that shows distinct properties from known cloned LPA receptors in ligand specificities, Ca(2+) response, modulation of adenylyl cyclase, and MAP kinase activation.  相似文献   

16.
Previous work from this laboratory indicates a role for the complement component C5 in neuroprotection against excitotoxicity. In the present study, we tested the hypothesis that the C5-derived anaphylatoxin C5a protects against kainic acid (KA)-induced neurodegeneration and investigated the mechanism of C5a neuronal activity in vitro. Brain intraventricular infusion of KA into adult mice caused neuronal morphological features of apoptosis in the pyramidal layer of the hippocampal formation as indicated by counts of neurons with pyknotic/condensed nuclei associated with cytoplasmic eosinophilia. Co-intraventricular infusion of human recombinant C5a with KA resulted in a marked reduction of morphological features of apoptotic neuronal death. In vitro studies confirmed C5a neuroprotection: treatment of primary murine corticohippocampal neurons with human or mouse recombinant C5a reduced glutamate neurotoxicity, as measured by trypan blue exclusion assay. This protection concurred with inhibition of glutamate-mediated induction of the caspase-3-related cysteine protease and coincided with marked reduction of neurons with morphological features of apoptosis, as found in vivo. Our studies indicate that C5a may inhibit glutamate-mediated neuronal death through partial inhibition of caspase-3 activity. These findings suggest a novel noninflammatory role for C5a in modulating neuronal responses to excitotoxins.  相似文献   

17.
18.
The C activation fragment C5a is the most potent plasma-derived chemotactic factor known. This humoral factor induces both neutrophil and macrophage activation at low nanomolar concentrations. We have synthesized a series of C-terminal C5a analogues that exhibit all of the characteristic biologic activities of C5a. These peptides apparently contain the effector site for C5a receptor-mediated cellular activation, but express only a fraction of the potency of intact C5a. We have demonstrated the following in vitro activities for these C5a peptides: 1) ileal (guinea pig) contraction; 2) platelet (guinea pig) activation; and 3) neutrophil (human) polarization and chemotaxis. The effect of C5a peptides in vivo was evaluated by measuring enhancement in vascular permeability. Although potencies of the most effective synthetic C5a analogues were on the order of 0.01 to 0.1% that of the natural factor, our biologic data confirm that the C5a peptides are full agonists of the intact factor and may be useful substitutes for intact C5a. Furthermore, our results indicate that elongation of the C5a analogues from 10 to 19 residues in length contributes little toward enhancing or decreasing potency of the synthetic C5a analogues. Replacement of residues in the effector region by D-amino acids or by introduction of a cyclic group to reduce flexibility of the backbone decreased potency of the analogues. Substitution of His 67 by Phe in the decapeptide C5a 65-74 resulted in a significant increase in potency of the C5a analogue. The marked enhancement in potency from replacing His 67 by Phe in analogue C5a peptides identifies an important hydrophobic subsite. We conclude that site-specific amino acid modifications in or near the C-terminal effector site sequence can diminish or optimize potency of the model C5a peptides. However, there apparently are subsites on folded C5a, from regions other than the C-terminal portion of the molecule, that contribute significant receptor interactions. These subsites must be identified and incorporated into C5a model peptide designs before expression of full potency by synthetic analogues of this factor will be realized.  相似文献   

19.
The primary structure of a novel putative subunit of the mouse glutamate receptor channel, designated as delta 1, has been deduced by cloning and sequencing the cDNA. The delta 1 subunit shows 21-25% amino acid sequence identity with previously characterized rodent glutamate receptor channel subunits and thus may represent a new subfamily of the glutamate receptor channel.  相似文献   

20.
Previously we demonstrated by random saturation mutagenesis a set of mutations in the extracellular (EC) loops that constitutively activate the C5a receptor (C5aR) (Klco et al., Nat Struct Mol Biol 2005;12:320-326; Klco et al., J Biol Chem 2006;281:12010-12019). In this study, molecular modeling revealed possible conformations for the extracellular loops of the C5a receptors with mutations in the EC2 loop or in the EC3 loop. Comparison of low-energy conformations of the EC loops defined two distinct clusters of conformations typical either for strongly constitutively active mutants of C5aR (the CAM cluster) or for nonconstitutively active mutants (the non-CAM cluster). In the CAM cluster, the EC3 loop was turned towards the transmembrane (TM) helical bundle and more closely interacted with EC2 than in the non-CAM cluster. This suggested a structural mechanism of constitutive activity where EC3 contacts EC2 leading to EC2 interactions with helix TM3, thus triggering movement of TM7 towards TM2 and TM3. The movement initiates rearrangement of the system of hydrogen bonds between TM2, TM3 and TM7 including formation of the hydrogen bond between the side chains of D82(2.50) in TM2 and N296(7.49) in TM7, which is crucial for formation of the activated states of the C5a receptors (Nikiforovich et al., Proteins: Struct Funct Gene 2011;79:787-802). Since the relative large length of EC3 in C5aR (13 residues) is comparable with those in many other members of rhodopsin family of GPCRs (13-19 residues), our findings might reflect general mechanisms of receptor constitutive activation. The very recent X-ray structure of the agonist-induced constitutively active mutant of rhodopsin (Standfuss et al., Nature 2011;471:656-660) is discussed in view of our modeling results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号