首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell fractions were prepared from ACI rat livers and from rat hepatoma cell clone M-5123-C1. Radioimmunoassays of ferritin and of its protein subunits in various cell fractions after biosynthetic labeling with [14C]leucine were done by means of ferritin-specific and subunit-specific rabbit antibody. In both ACI rat livers and M-5123-C1 hepatoma cells free polyribosomes synthesized approximately 81% of the protein subunits of ferritin, and membrane-bound polyribosomes synthesized the rest. In both polyribosomal fractions, [14C]leucine-labeled subunits were detected earlier than [14C]leucine-labeled ferritin and apoferritin (5 min as against 30 min after initiation of a pulse). Time sequence studies of the shifts of biosynthetically labeled subunits and ferritin through different cell compartments provided evidence for vectorial transport of subunits and of ferritin, the direction of transport being from the two polyribosomal systems to the smooth membrane compartment and to the cytosol.  相似文献   

2.
1. The mechanism of the stimulation of ferritin synthesis by iron in vivo has been studied in rat liver. Ferritin synthesis and turnover was measured by [(14)C]leucine incorporation. 2. Actinomycin D had no inhibitory effect, after administration of iron, on [(14)C]leucine incorporation into ferritin but appeared to augment the effect of iron on ferritin synthesis. 3. Cycloheximide completely abolished the stimulation by iron of [(14)C]leucine into ferritin and was subsequently utilized to show that iron acts in vivo by translational induction of apoferritin synthesis, rather than by stabilization of apoferritin or its precursors. 4. This conclusion was confirmed by showing that 2 days after acute bleeding, when iron was in the process of being removed from hepatic ferritin stores, ferritin synthesis was decreased whereas breakdown rates were unchanged.  相似文献   

3.
A ferritin was isolated from the obligate anaerobe Bacteroides fragilis. Estimated molecular masses were 400 kDa for the holomer and 16.7 kDa for the subunits. A 30-residue N-terminal amino acid sequence was determined and found to resemble the sequences of other ferritins (human H-chain ferritin, 43% identity; Escherichia coli gen-165 product, 37% identity) and to a lesser degree, bacterioferritins (E. coli bacterioferritin, 20% identity). The protein stained positively for iron, and incorporated 59Fe when B. fragilis was grown in the presence of [59Fe]citrate. However, the isolated protein contained only about three iron atoms per molecule, and contained no detectable haem. This represents the first isolation of a ferritin protein from bacteria. It may alleviate iron toxicity in the presence of oxygen.  相似文献   

4.
The subcellular localization of ferritin and its iron taken up by rat hepatocytes was investigated by sucrose-density-gradient ultracentrifugation of cell homogenates. After incubation of hepatocytes with 125I-labelled [59Fe]ferritin, cells incorporate most of the labels into structures equilibrating at densities where acid phosphatase and cytochrome c oxidase are found, suggesting association of ferritin and its iron with lysosomes or mitochondria. Specific solubilization of lysosomes by digitonin treatment indicates that, after 8 h incubation, most of the 125I is recovered in lysosomes, whereas 59Fe is found in mitochondria as well as in lysosomes. As evidenced by gel chromatography of supernatant fractions, 59Fe accumulates with time in cytosolic ferritin. To account for these results a model is proposed in which ferritin, after being endocytosed by hepatocytes, is degraded in lysosomes, and its iron is released and re-incorporated into cytosolic ferritin and, to a lesser extent, into mitochondria.  相似文献   

5.
It has long been assumed that iron regulates the turnover of ferritin, but evidence for or against this idea has been lacking. This issue was addressed using rat hepatoma cells with characteristics of hepatocytes subjected to a continuous influx of iron. Iron-pretreated cells were pulsed with [(35)S]Met for 60 min or with (59)Fe overnight and harvested up to 30 h thereafter, during which they were/were not cultured with ferric ammonium citrate (FAC; 180 microm). Radioactivity in ferritin/ferritin subunits of cell heat supernatants was determined by autoradiography of rockets obtained by immunoelectrophoresis or after precipitation with ferritin antibody and SDS-PAGE. Both methods gave similar results. During the +FAC chase, the concentration of ferritin in the cells increased linearly with time. Without FAC, the half-life of (35)S-ferritin was 19-20 h; with FAC there was no turnover. Without FAC, the iron in ferritin had an apparent half-life of 20 h; in the presence of FAC there was no loss of (59)Fe. Without FAC, concentrations of ferritin iron and protein also decreased in parallel. We conclude that a continuous influx of excess iron can completely inhibit the degradation of ferritin protein and that the iron and protein portions of ferritin molecules may be coordinately degraded.  相似文献   

6.
Ferritin was isolated from bovine spleen and used to prepare apoferritin and reconstituted ferritin. The mol. wt of bovine ferritin was 464,000 with monomer subunits about 18,000-19,500. Gel electrophoresis showed three bands each for ferritin, apoferritin and reconstituted ferritin; all stained for protein and carbohydrate. Only apoferritin failed to stain for iron. Bovine ferritin had higher concentrations of proline, threonine, and valine than equine or human ferritin. The iron:protein ratio of bovine ferritin was 0.161 and of equine ferritin was 0.192. After iron uptake by the apoferritins the iron:protein ratios were 0.186 and 0.278 for the bovine and equine ferritins, respectively.  相似文献   

7.
Four aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of erythroid differentiation by dimethyl sulfoxide. (1) The binding of 125I-labeled transferrin was determined over a range of transferrin concentrations from 0.5 to 15 μM. Scatchard analysis of the binding curves demonstrated equivalent numbers of transferrin binding sites per cell: 7.78 ± 2.41 · 105 in non-induced cells and 9.28 ± 1.57 · 105 after 4 days of exposure to dimethyl sulfoxide. (2) The rate of iron transport was determined by measuring iron uptake from 59Fe-labeled transferrin. Iron uptake in non-induced cells was approx. 17 000 molecules of iron/cell per min; 24 h after addition of dimethyl sulfoxide it increased to 38 000, and it rose to maximal levels of approx. 130 000 at 72 h. (3) Heme synthesis, assayed qualitatively by benzidine staining and measured quantitatively by incorporation of 59Fe or [2-14C]glycine into cyclohexanone-extracted or crystallized heme, was not detected until 3 days after addition of dimethyl sulfoxide, when 12% of the cells were stained by benzidine and 6 pmol 59Fe and 32 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. After 4 days, 60% of the cells were benzidine positive and 34 pmol 59Fe and 90 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. (4) The rate of incorporation of 59Fe into ferritin, measured by immunoprecipitation of ferritin by specific antimouse ferritin immunoglobulin G, rose from 4.4 ± 0.6 cells to 18.4 ± 1.3 pmol 59Fe/h per 108 cells 3 days after addition of dimethyl sulfoxide, and then fell to 11.6 ± 3.1 pmol 4 days after dimethyl sulfoxide when heme synthesis was maximal. These studies indicate that one or more steps in cellular iron transport distal to transferrin binding is induced early by dimethyl sulfoxide and that ferritin may play an active role in iron delivery for heme synthesis.  相似文献   

8.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

9.
The carbohydrate composition of horse spleen ferritin was studied. 1 mol of the apoferritin, the protein moiety of ferritin, contains 25 mol of hexose, 3 mol of hexosamine and 10 mol of fucose. Same carbohydrate composition was detected in the apoferritin from iron rich ferritins. These results indicate that horse spleen ferritin is composed of non-identical subunits as regards its carbohydrate composition.  相似文献   

10.
Ceruloplasmin catalyzed the incorporation of iron into apoferritin with a stoichiometry of 3.8 Fe(II)/O2. This value remained the same when ferritin containing varying amounts of iron was used. Contrary to the "crystal growth" model for ferritin formation, no iron incorporation into holoferritin was observed in the absence of ceruloplasmin. Fe(II)/O2 ratios close to 2 were obtained for iron incorporation into apo- and holoferritin in Hepes buffer, in the absence of ceruloplasmin, indicating the formation of reduced oxygen species. Sequential loading of ferritin in this buffer resulted in increasing oxidation of the protein as measured by carbonyl formation. Sequential loading of ferritin using ceruloplasmin did not result in protein oxidation and a maximum of about 2300 atoms of iron were incorporated into rat liver ferritin. This corresponded to the maximum amount of iron found in rat liver ferritin in vivo after injection with iron. These results provide evidence for ceruloplasmin as an effective catalyst for the incorporation of iron into both apo- and holoferritin. The possibility that these findings may have physiological significance is discussed.  相似文献   

11.
The out-exchange kinetics of tritium from apoferritin, ferritin of various iron contents, and apoferritin subunits were examined. The exchange kinetics indicated no detectable conformational differences in the tetracosamer with and without hydrous ferric oxide in the internal cavity of the molecule. The data for apoferritin subunits were markedly different from those for the tetracosameric state. The exchange kinetics for apoferritin were consistent with a rapid exchange of water between the internal cavity of the protein and the bulk solvent outside the protein shell.  相似文献   

12.
The iron-storage molecule ferritin can sequester up to 4500 Fe atoms as the mineral ferrihydrite. The iron-core is gradually built up when FeII is added to apoferritin and allowed to oxidize. Here we present evidence, from M?ssbauer spectroscopic measurements, for the surprising result that iron atoms that are not incorporated into mature ferrihydrite particles, can be transferred between molecules. Experiments were done with both horse spleen ferritin and recombinant human ferritin. M?ssbauer spectroscopy responds only to 57Fe and not to 56Fe and can distinguish chemically different species of iron. In our experiments a small number of 57FeII atoms were added to two equivalent apoferritin solutions and allowed to oxidize (1-5 min or 6 h). Either ferritin containing a small iron-core composed of 56Fe, or an equal volume of NaCl solution, was added and the mixture frozen in liquid nitrogen to stop the reaction at a chosen time. Spectra of the ferritin solution to which only NaCl was added showed a mixture of species including 57FeIII in solitary and dinuclear sites. In the samples to which 150 56FeIII-ferritin had been added the spectra showed that all, or almost all, of the 57FeIII was in large clusters. In these solutions 57FeIII initially present as intermediate species must have migrated to molecules containing large clusters. Such migration must now be taken into account in any model of ferritin iron-core formation.  相似文献   

13.
Cell-specific differences occur in the primary structure of ferritin. For example, red cell and liver ferritin from bullfrog tadpoles differ by 1.5 times in serine content. To determine if cell-specific differences in ferritin primary structure are expressed in the tetraeicosomer, which thus might distinguish the proteins in a functional state, phosphorylation in vitro was employed as a probe using [gamma-32P]ATP and the catalytic subunit from the cAMP-dependent protein kinase of bovine skeletal muscle. Subunits of both proteins in the tetraeicosomers were phosphorylated. Based on tryptic peptide maps, five regions common to both red cell and liver apoferritin were phosphorylated, as confirmed for two peptides by amino acid analyses. [32P]Apoferritin from red cells yielded an additional four 32P-fragments by mapping, at least three of which were unique by amino acid analysis and, in one case, might represent a 32P-Fe complex bound by a fragment of the iron-binding site. One peptide appeared to be unique to liver apoferritin. High concentrations of ATP yielded one additional peptide common to liver and red cell and one red cell-specific peptide in the tryptic peptide maps. The maximum moles of 32P/molecule were 13 +/- 4 and 6 +/- 2, respectively, for red cell and liver apoferritin, which corresponded within experimental error to the number of 32P-tryptic peptides. The level of phosphorylation was, on the average, not more than one site/subunit. Furthermore, above certain levels of phosphorylation, some subunits in the assemblage of 24 appeared to be unavailable as substrates, possibly because of charge repulsion or conformational changes. The possibility that post-translational modifications of ferritin which amplify cell-specific structural features occur in vivo with cytoplasmic components, e.g. protein kinases, is considered in terms of the physiological availability of iron from different iron storage cells and developmental changes in iron storage.  相似文献   

14.
The uptake and subsequent release of iron by apoferritin and ferritin was studied by using labelled iron ((59)Fe). The experimental results are consistent with predictions arising from a model system developed in the interpretation of previous experiments. In this model, uptake and release of ferritin iron is controlled by the available surface area of the small crystalline particles of hydrous ferric oxide found within the ferritin molecule. Evidence is also presented for the exchange of Fe(3+) ions among the various cation sites within these crystallites.  相似文献   

15.
Mouse (MEL) and human (K-562) erythroleukemia cell lines can be induced to undergo erythroid differentiation, including hemoglobin (Hb) synthesis, by extra cellular hemin. In order to study the effect of extracellular hemin on intracellular ferritin and Hb content, we have used Mossabauer spectroscopy to measure the amount of 57Fe incorporated into ferritin or Hb and a fluorescent enzyme-linked immunosorbent assay (ELISA) to measure the ferritin protein content. When K-562 cells were cultured in the presence of a 57Fe source either as transferrin or citrate, in the absence of a differentiation inducer, all the intracellular 57Fe was detected in ferritin. When the cells were cultured in the presence of 57Fe-hemin, 57Fe was found in both ferritin and Hb. 57Fe in ferritin increased rapidly, and after 2 days it reached a plateau at 5 X 10(-14) g/cell. 57Fe in Hb increased linearly with time and reached the same value after 12 days. Addition of other iron sources such as iron-saturated transferrin, iron citrate, or iron ammonium citrate caused a much lower increase in ferritin protein content as compared to hemin. When K-562 cells were induced by 57Fe-hemin in the presence of 56Fe-transferrin, 57Fe was found to be incorporated in equal amounts into both ferritin and Hb. However, when the cells were induced by 56Fe-hemin in the presence of 57Fe-transferrin, 57Fe was incorporated only into ferritin, but not into Hb, which contained 56Fe iron. These results indicate that in K-562 cells, when hemin is present in the culture medium it is preferentially incorporated into Hb, regardless of the availability of other extra- or intracellular iron sources such as transferrin or ferritin. In MEL cells induced to differentiate by dimethylsulfoxide (DMSO) a different pattern of iron incorporation was observed; 57Fe from both transferrin and hemin was found to incorporate in ferritin as well as in Hb.  相似文献   

16.
When Chang liver cells are grown in an iron-rich medium for up to 20 weeks, iron loading up to 50 times the normal cellular iron content may be obtained, although ferritin increases only to about 10 times normal. Ferritin has been isolated from such cells, and the isoferritin pattern found on elution from DEAE-Sephadex A-50 by increasing chloride concentrations has been used as a basis for studying changes in the properties of ferritin under conditions of cellular loading. A consistent shift of peak ferritin-elution position to higher chloride concentrations (lower pI) occurs when cells are loaded with ferric nitrilotriacetate for increasing lengths of time. A change in immunoreactivity also takes place on loading, the ratio of ferritin reacting with heart and spleen ferritin antibodies increasing at any particular value of pI. Cells were pulse-labelled with [59Fe]ferric nitrilotriacetate and [3H]leucine followed by non-radioactive iron in the same form. During the 72 h after the synthesis of new protein and its incorporation of iron, there is a slight acid shift in its isoelectric point. This effect is seen in both normal and loaded cells, with the whole spectrum being shifted towards lower pI in the loaded state. These findings suggest that the shift to more acidic ferritins on iron loading and the associated changes in antigenicity may be unrelated to subunit composition.  相似文献   

17.
Subunit dimers in sheep spleen apoferritin. The effect on iron storage   总被引:6,自引:0,他引:6  
Ferritin with high and low iron content, 2000 and 790 iron atoms/molecule, was isolated from the spleens of copper-poisoned and control lambs, respectively. Differences in the iron content in vivo were reflected in the properties of the apoferritin protein shells, since the apoprotein from the low iron ferritin took up iron relatively more slowly (0.52 +/- 0.09) and released it more rapidly (1.68 +/- 0.06) in vitro. Although the two types of apoferritin were indistinguishable in terms of surface charge (pI range 4.98-5.43) and in consisting of both heavy and light subunits, the subunit interactions differed markedly; 40-50% of the subunits of low iron ferritin were in dimers stable to reduction and carboxylmethylation, 4% mercaptoethanol, 8% sodium dodecyl sulfate, and 100 degrees C for 30 min, 70% formic acid, and 30% methanol. Subunit dimers were also observed in liver ferritin from mouse and neonatal pig and were enriched in a low iron fraction of horse spleen ferritin. Based on cyanogen bromide fragmentation and NH2-terminal analysis, the natural and chemically cross-linked subunit dimers had two peptides in common; natural subunit dimers also appeared to have a second region cross-linked, suggesting the possibility of both intra- and intersubunit links in the natural dimers. In sheep spleen ferritin, both heavy and light subunits appeared to participate in subunit dimerization. Natural subunit dimers were enriched in low iron ferritin fractions of all ferritin preparations tested (linear correlation = 0.94) and can explain, at least in part, the previously observed effects of iron core size on the apoferritin shell. Whether the subunit cross-links represent part of the subunit assembly process subsequently cleaved by iron (or copper) or whether the cross-links form after iron core formation in vivo has yet to determined. In either case, it is clear that such post-translational variations can affect iron uptake and release and emphasize the importance of the protein shell in determining the iron storage properties of ferritin.  相似文献   

18.
Thirty minutes following an intragastric dose of [59]Fe, rats subjected to short-term and long-term iron depletion showed a similar increase in [59]Fe in plasma and a similar decrease in the retention of [59]Fe in mucosal cytosol compared to controls. With both low-iron groups, a two-fold increase in [59]Fe uptake by brush-border membrane vesicles and a six-fold reduction in the [59]Fe incorporated into the ferritin of the mucosal cytosol were observed. These studies indicate that short-term exposure to a low-iron diet triggers changes in both the uptake of iron by the brush-border membrane and the processing of iron within the mucosal cell prior to major changes in body iron status.  相似文献   

19.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

20.
1. Rat thyroid lobes were incubated for various periods of time in Krebs–Ringer bicarbonate containing [3H]leucine and either [1-14C]galactose or [1-14C]mannose. Radioactivity in soluble proteins was determined after their separation by sucrose-gradient centrifugation. 2. The time-course of incorporation of label from [14C]-mannose into soluble thyroid proteins was parallel to that observed for [3H]leucine. There was a lag of at least 30min. before either label appeared in non-iodinated thyroglobulin (protein 17–18s). During this time both labels were detected in two fractions known to contain subunit precursors of thyroglobulin (fractions 12s and 3–8s). Radioactivity from double-labelled fractions 12s and 3–8s was transferred to protein 17–18s during subsequent incubation in an unlabelled medium. 3. In contrast, most of the [14C]galactose was immediately incorporated into protein 17–18s. 4. During the first hour of incubation, puromycin almost completely inhibited the incorporation of label from [3H]leucine and [14C]mannose into all protein fractions, but had little effect on the incorporation of [14C]galactose into protein 17–18s. 5. These results indicate that mannose is incorporated into the carbohydrate groups of protein 17–18s at an earlier stage in its formation than galactose. It is suggested that the synthesis of the carbohydrate groups of ghyroglobulin begins soon after formation of the polypeptide components, more than 30min. before these are aggregated to protein 17–18s; carbohydrate synthesis then proceeds in a stepwise manner, galactose being incorporated at about the time of aggregation of subunits to protein 17–18s. Most, if not all, the carbohydrate is added to thyroglobulin before it is iodinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号