首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Guo S  Kenne L 《Phytochemistry》2000,54(6):615-623
Sixteen saponins were identified from a bark extract of Quillaja saponaria Molina. The compounds were characterized, using NMR spectroscopy, mass spectrometry and monosaccharide analysis, as quillaic acid substituted at C-3 with oligosaccharides consisting of a disaccharide, beta-D-Galp-(1-->2)-beta-D-GlcpA substituted with either D-xylose or L-rhamnose and at C-28 with complex oligosaccharide structures consisting of a disaccharide, alpha-L-Rhap-(1-->2)-4-O-acetyl-beta-D-Fucp, substituted with various amount of D-xylose. D-glucose, D-apiose, and L-rhamnose.  相似文献   

2.
The chemo-enzymatic synthesis is described of beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->O(CH(2))(6)NH(2) (1), beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (2), beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (3), and beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (4), representing fragments of the repeating unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Linear intermediate oligosaccharides 5-8 were synthesized via chemical synthesis, followed by enzymatic galactosylation using bovine milk beta-1,4-galactosyltransferase as a catalyst. The title oligosaccharides form suitable compounds for conjugation with carrier proteins, to be tested as potential vaccines in animal models.  相似文献   

3.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

4.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

5.
A galactoglucomannan (GGM) has been purified from the primary cell walls of ripe kiwifruit. A combination of barium hydroxide precipitation, anion exchange- and gel-permeation chromatography gave a chemically homogeneous polymer with a 1:2:2 galactose-glucose-mannose ratio and a molecular weight range of 16-42 kDa. Complete hydrolysis of the polymer with endo-1,4-beta-mannanase (EC 3.2.1.78) from Aspergillus niger gave a mixture of oligosaccharides, three of which (II, III, IV) accounted for more than 80% of the GGM. Structural characterisation of these oligosaccharides and the original polysaccharide was achieved by linkage analysis, 1D and 2D NMR spectrometry and enzymatic hydrolysis. Oligosaccharide II beta-D-Glcp-(1-->4)-beta-D-Manp-(1-->, III beta-D-Glcp-(1-->4)-[alpha-D-Galp-(1-->6)]-beta-D-Manp-(1-->, and IV beta-D-Glcp-(1-->4)-[beta-D-Galp-(1-->2)-alpha-D-Galp-(1-->6)]-beta-D-Manp-(1-->4)-beta-D-Glcp-(1-->4)-beta-D-Manp-(1-->, appeared in the molar ratio of 2:1:1. A trace amount of mannobiose (I) was detected, indicating that some of the mannosyl residues were contiguous. It is concluded that the predominant structural feature of kiwifruit GGM is a backbone of alternating beta-(1-->4)-linked D-glucopyranosyl and D-mannopyranosyl residues, with approximately one third of the latter carrying side-chains at 0-6 of single alpha-D-Galp-(1--> residues (50% of the branches) or the disaccharide beta-D-Galp-(1-->2)-alpha-D-Galp-(1--> (50% of the branches), the substituted residues being separated by three or five unsubstituted monosaccharide units.  相似文献   

6.
The structure of the lipopolysaccharide of Haemophilus influenzae mutant strain, RM.118-26, was investigated. Electrospray ionization-mass spectrometry on intact lipopolysaccharide, O-deacylated lipopolysaccharide and core oligosaccharides obtained from lipopolysaccharide after mild acid hydrolysis provided information on the composition and relative abundance of the glycoforms. Oligosaccharide samples were studied in detail using high-field NMR techniques. The structure of the major glycoform containing phosphocholine is identical to the Hex2 glycoform described for H. influenzae RM.118-28 [Risberg, A., Schweda, E.K.H. & Jansson, P.-E. (1997) Eur. J. Biochem. 243, 701-707]. A second major glycoform, containing three hexose residues (Hex3), in which a lactose unit, beta-D-Galp-(1-->4)-beta-D-Glcp, is attached at the O-2 position of the terminal heptose of the inner core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-( 1-->4)-]- L-alpha-D-Hepp-(1-->5)-alpha-Kdo, carries no phosphocholine. Instead this lipopolysaccharide glycoform is partly (40%) substituted by an O-acetyl group linked to the 6-position of the glucose residue in the lactose unit and has the following structure:  相似文献   

7.
The allyl glycoside beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp (18) and the acetonyl glycoside of beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp (28) were synthesized as analogues of the lentinan heptaose repeating unit. 4,6-O-Benzylidenated monosaccharide donor 3 and 4,6-O-benzylidenated tetrasaccharide acceptor 14 were used to ensure the beta-linkage in the synthesis of 18, while 4,6-O-benzylidenated disaccharide acceptor 20, and 4,6-O-benzylidenated disaccharide donors 21 and 24 were used to ensure the beta-linkage in the synthesis of 28.  相似文献   

8.
The structures of one tri-(1), two tetra-(2 and 3), and one hexa-saccharide (4) produced by treatment of barley flour, after removal of the starch components, with a fungal beta-D-glucanase (Finizyme) have been assigned on the basis of 1H- and 13C-n.m.r. data as follows: beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-D-Glcp (1), beta-D-Glcp-(1----4)-beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-D-Glcp (2), beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-beta-D-Glcp-(1----4)-D-Glcp (3), and beta-D-Xylp-(1----4)-[alpha-L-Araf-(1----3)]-[alpha-L-Ara f-(1----2)-beta-D-Xylp-(1----4)-beta-D-Xylp- (1----4)-D-Xylp (4).  相似文献   

9.
Nontypeable Haemophilus influenzae (NTHi) is a common commensal of the human upper respiratory tract and is associated with otitis media in children. The structures of the oligosaccharide portions of NTHi lipopolysaccharide (LPS) from several otitis media isolates are now well characterized but it is not known whether there are structural differences in LPS from colonizing, nondisease associated strains. Structural analysis of LPS from nondisease associated NTHi strains 11 and 16 has been achieved by the application of high-field NMR techniques, ESI-MS, ESI-MSn, capillary electrophoresis coupled to ESI-MS, composition and linkage analyses on O-deacylated LPS and core oligosaccharide material. This is the first study to report structural details on LPS from strains taken from the nasopharynx from healthy individuals. Both strains express identical structures and contain the common element of H. influenzae LPS, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-lipid A, in which each heptose is elongated by a single hexose residue with no further oligosaccharide extensions. In the major Hex3 glycoform, the terminal Hepp residue (HepIII) is substituted at the O-2 position by a beta-D-Galp residue and the central Hepp residue (HepII) is substituted at O-3 by a alpha-D-Glcp residue. Notably, the strains express two phosphocholine (PCho) substituents, one at the O-6 position of alpha-D-Glcp and the other at the O-6 position of beta-D-Galp. Major acetylation sites were identified at O-4 of Gal and O-3 of HepIII. Additionally, both strains express glycine, and strain 11 also expresses detectable amounts of N-acetylneuraminic acid.  相似文献   

10.
Structural analysis of the lipopolysaccharide (LPS) of nontypeable Haemophilus influenzae strain 1003 has been achieved by the application of high-field NMR techniques, ESI-MS, capillary electrophoresis coupled to ESI-MS, composition and linkage analyses on O-deacylated LPS and core oligosaccharide material. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PP Etn-->4]-alpha-Kdop-(2-->6)-Lipid A, in which the beta-D-Glcp residue is substituted by phosphocholine at O-6 and an acetyl group at O-4. A second acetyl group is located at O-3 of the distal heptose residue (HepIII). HepIII is chain elongated at O-2 by either a beta-D-Glcp residue (major), lactose or sialyllactose (minor, i.e. alpha-Neu5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp), where a third minor acetylation site was identified at the glucose residue. Disialylated species were also detected. In addition, a minor substitution of ester-linked glycine at HepIII and Kdo was observed.  相似文献   

11.
A heptasaccharide, beta-D-Xylp-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)-[beta-D-GlcpA-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp, the repeating unit of the exopolysaccharide from Cryptococcus neoformans serovar B, was synthesized as its methyl glycoside. Thus 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-d-mannopyranosyl trichloroacetimidate (7) and allyl 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-4,6-di-O-benzoyl-alpha-D-mannopyranoside (8), readily obtained from the corresponding monosaccharide derivatives via simple transformation, were coupled to give a (1-->3)-linked tetrasaccharide 9. Deallylation of 9 followed by trichloroacetimidate formation produced the tetrasaccharide donor 11. Condensation of methyl 2,3,4-tri-O-benzoyl-beta-d-xylopyranosyl-(1-->4)-2-O-acetyl-6-O-benzoyl-alpha-D-mannopyranoside (18) with 11 followed by selective deacetylation yielded hexasaccharide acceptor 20. Coupling of 20 with methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate bromide (21) and subsequent deprotection furnished the target heptaoside. A hexasaccharide fragment, alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)-[beta-D-GlcpA-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp, was also similarly synthesized as its methyl glycoside.  相似文献   

12.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

13.
Wu Z  Ning J  Kong F 《Carbohydrate research》2003,338(21):2203-2212
Beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)](2-3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp were synthesized as their methoxyphenyl glycosides in a concise way with a trisaccharide as the building block.  相似文献   

14.
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. Structural elucidation of the LPS from H. influenzae type b strain RM7004 was achieved by using electrospray ionization mass spectrometry (ESI-MS) and high-field NMR techniques on delipidated LPS and core oligosaccharide samples of LPS. It was found that the organism elaborates a series of related LPS glycoforms having a common inner-core structure, but differing in the number and position of attached hexose residues. LPS glycoforms containing between four and nine hexose residues were structurally characterized. The inner-core element was determined to be L-alpha-D-Hepp-(1-->2)-[PEA-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[P-->4]-alpha-KDOp-(2-->, a structural feature which has been identified in every H. influenzae strain investigated to date. Two major groups of isomeric glycoforms were characterized in which the terminal Hepp residue of the inner-core element was either substituted at the O-2 position with a beta-D-Galp residue or not. The structures of the major LPS glycoforms were found to have oligosaccharide chain extensions from O-3 of the middle Hepp residue. Glycoforms containing five and six hexose residues were most abundant and were shown to carry the tetrasaccharide unit alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->4)-alpha-D-Glcp at the O-3 position of the middle heptose. This tetrasaccharide displays the globoside trisaccharide (globotriose) as a terminal epitope, a structure that is found on many human cells (P(k) blood group antigen) and which is thought to be an important virulence determinant for H. influenzae. LPS glycoforms were characterized that had further chain extension from the beta-D-Glcp-(1--> residue of the proximal Hepp. In the fully extended LPS (Hex9/Hex8' glycoforms), both the proximal and middle heptose residues carried tetrasaccharide chains displaying terminal globotriose epitopes. In addition, the LPS was found to carry phosphorylcholine and O-acetyl groups.  相似文献   

15.
Wu Z  Kong F 《Carbohydrate research》2003,338(17):1727-1735
alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[alpha-D-Manp-(1-->6)]-D-Glcp and alpha-D-Manp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)[-alpha-D-Manp-(1-->6)]-D-Glcp were synthesized in a regio- and stereoselective way as the mannose-containing analogues of the immunomodulating beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-D-Glcp.  相似文献   

16.
Structural elucidation of the lipopolysaccharide (LPS) of Haemophilus influenzae, strain Rd, a capsule-deficient type d strain, has been achieved by using high-field NMR techniques and electrospray ionization-mass spectrometry (ESI-MS) on delipidated LPS and core oligosaccharide samples. It was found that this organism expresses heterogeneous populations of LPS of which the oligosaccharide (OS) epitopes are subject to phase variation. ESI-MS of O-deacylated LPS revealed a series of related structures differing in the number of hexose residues linked to a conserved inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp- (1-->4)-]- L-alpha-D-Hepp-(1-->5)-alpha-Kdo, and the degree of phosphorylation. The structures of the major LPS glycoforms containing three (two Glc and one Gal), four (two Glc and two Gal) and five (two Glc, two Gal and one GalNAc) hexoses were substituted by both phosphocholine (PCho) and phosphoethanolamine (PEtn) and were determined in detail. In the major glycoform, Hex3, a lactose unit, beta-D-Galp-(1-->4)-beta-D-Glcp, is attached at the O-2 position of the terminal heptose of the inner-core element. The Hex4 glycoform contains the PK epitope, alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp while in the Hex5 glycoform, this OS is elongated by the addition of a terminal beta-D-GalpNAc residue, giving the P antigen, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-D-Glc p. The fully extended LPS glycoform (Hex5) has the following structure. [see text] The structural data provide the first definitive evidence demonstrating the expression of a globotetraose OS epitope, the P antigen, in LPS of H. influenzae. It is noteworthy that the molecular environment in which PCho units are found differs from that observed in an Rd- derived mutant strain (RM.118-28) [Risberg, A., Schweda, E. K. H. & Jansson, P-E. (1997) Eur. J. Biochem. 243, 701-707].  相似文献   

17.
Zeng Y  Zhang W  Ning J  Kong F 《Carbohydrate research》2002,337(24):2383-2391
Two isomeric pentasaccharides, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp (I) and beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp (II), the possible repeating unit of the beta-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht, were synthesized as their 4-methoxyphenyl glycosides in a regio- and stereoselective manner. The pentasaccharide I was obtained from 3-O-selective glycosylation of 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (12) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (6) followed by acetylation, debenzylidenation, and 6-O-selective glucosylation with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl trichloroacetimidate (1), and then by deprotection. The pentasaccharide II was obtained from 3-O-selective coupling of 12 with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)-2,4-di-O-acetyl-3-O-allyl-alpha-D-glucopyranosyl trichloroacetimidate (10) followed by acetylation, debenzylidenation, and 6-O-selective glycosylation with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), and finally by deprotection.  相似文献   

18.
Four triterpenoid saponins from dried roots of Gypsophila species.   总被引:3,自引:0,他引:3  
Four new triterpenoid saponins were isolated from the roots of Gypsophila paniculata and G. arrostii. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques, without having recourse to chemical degradation or modification. The saponins investigated are: 3-O-beta-D-galactopyranosyl-(1----2)-[beta-D-xylopyranosyl-(1----3)]-bet a-D- glucuronopyranosyl quillaic acid 28-O-beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----4)]-alph a- L-rhamnopyranosyl-(1----2)-beta-D-fucopyranoside; 3-O-beta-D-galactopyranosyl-(1----2)-[beta-D-xylopyranosyl-(1----3)]-bet a- D-glucuronopyranosyl quillaic acid 28-O-beta-D-arabinopyranosyl-(1----4)-beta-D-arabinopyranosyl++ +-(1----3)-beta-D- xylopyranosyl-(1----4)-alpha-L-rhamnopyranosyl-(1----2)-beta-D-fucopyran oside; 3-O-beta-D-glucopyranosyl-(1----2)-beta-D-glucuronopyranosyl gypsogenin 28-O-beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----4)]-alph a- L-rhamnopyranosyl-(1----2)-beta-D-fucopyranoside; 3-O-beta-D-xylopyranosyl-(1----3)-[beta-D-galactopyranosyl-(1----2)]-bet a- D-glucuronopyranosyl gypsogenin 28-O-beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----4)-alpha -L- rhamnopyranosyl-(1----2)-beta-D-fucopyranoside.  相似文献   

19.
Wu Z  Kong F 《Carbohydrate research》2004,339(2):377-384
Coupling of the trisaccharide acceptor 2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-5-O-acetyl-1,2-O-isopropylidene-alpha-D-glucofuranose (2) with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-alpha-D-annopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (1) gave an alpha-linked hexasaccharide 3, while coupling of 2 with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (7) produced alpha- 8 and beta-linked 12 hexasaccharides in a ratio of 3:2. Deprotection of 3, 8, and 12 afforded the analogues of the immunomodulator beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-D-Glcp (A).  相似文献   

20.
A bioassay-guided phytochemical analysis of the triterpene saponins from under ground parts of Gypsophila arrostii var. nebulosa allowed the isolation of two triterpene saponins; nebuloside A, B based on gypsogenin and quillaic acid aglycone. Two new oleanane type triterpenoid saponins (nebuloside A, B) and three known saponins (13) were isolated from the root bark of Gypsophila arrostii var. nebulosa. The structures of the two new compounds were elucidated as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside A) and 3-O-β-d-xylopyranosyl-(1→3)-[β-d-galactopyranosyl(1→3)-β-d-galactopyranosyl-(1→2)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside B), on the basis of extensive spectral analysis and chemical evidence. Nebuloside A and B showed toxicity enhancing properties on saporin a type-I RIP without causing toxicity by themselves at 15 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号