首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Oxidation of unsaturated fatty acids was studied with isolated solubilized or nonsolubilized peroxisomes or with perfused liver isolated from rats treated with clofibrate. gamma-Linolenic acid gave the higher rate of beta-oxidation, while arachidonic acid gave the slower rate of beta-oxidation. Other polyunsaturated fatty acids (including docosahexaenoic acid) were oxidized at rates which were similar to, or higher than, that observed with oleic acid. Experiments with 1-14C-labeled polyunsaturated fatty acids demonstrated that these are chain-shortened when incubated with nonsolubilized peroxisomes. Spectrophotometric investigation of solubilized peroxisomal incubations showed that 2,4-dienoyl-CoA esters accumulated during peroxisomal beta-oxidation of fatty acids possessing double bond(s) at even-numbered carbon atoms. beta-Oxidation of [1-14C]docosahexaenoic acid by isolated peroxisomes was markedly stimulated by added NADPH or isocitrate. This fatty acid also failed to cause acyl-CoA-dependent NADH generation with conditions of assay which facilitate this using other acyl-CoA esters. These findings suggest that 2,4-dienoyl-CoA reductase participation is essential during peroxisomal beta-oxidation if chain shortening is to proceed beyond a delta 4 double bond. Evidence obtained using arachidionoyl-CoA, [1-14C]arachidonic acid, and [5,6,8,9,11,12,14,15-3H]arachidonic acid suggests that peroxisomal beta-oxidation also can proceed beyond a double bond positioned at an odd-numbered carbon atom. Experiments with isolated perfused livers showed that polyunsaturated fatty acids also in the intact liver are substrates for peroxisomal beta-oxidation, as judged by increased levels of the catalase-H2O2 complex on infusion of polyunsaturated fatty acids.  相似文献   

2.
Chain shortening via beta-oxidation from the omega-end has been recognized as the major pathway for the degradation of cysteinyl leukotrienes as well as leukotriene B4 (LTB4). The metabolic compartmentation of this pathway was studied using peroxisomes purified from normal and clofibrate-treated rat liver. beta-Oxidation products of omega-carboxy-LTB4, including omega-carboxy-dinor-LTB4 identified by gas chromatography-mass spectrometry, were formed by the isolated peroxisomes. The reaction was dependent on CoA, ATP, and NAD and was stimulated by FAD. NADPH was necessary for the further metabolism of omega-carboxy-dinor-LTB4. Together with microsomes a degradation of omega-carboxy-LTB4 also proceeded in isolated mitochondria in the presence of CoA, ATP, and carnitine. beta-Oxidation of the cysteinyl leukotriene omega-carboxy-N-acetyl-leukotriene E4 was observed only with isolated peroxisomes in combination with lipid-depleted microsomes. Direct photoaffinity labeling using omega-carboxy-[3H] LTB4 and omega-carboxy-N-[3H]acetyl-LTE4 served to identify peroxisomal leukotriene-binding proteins. The bifunctional protein (EC 4.2.1.17 and 1.1.1.35) and 3-ketoacyl-CoA thiolase (EC 2.3.1.16) of the peroxisomal beta-oxidation system were the predominantly labeled polypeptides as revealed by precipitation with monospecific antibodies. In vivo studies with N-acetyl-[3H2]LTE4, N-acetyl-[3H8]LTE4, and N-[14C]acetyl-LTE4 after treatment with the peroxisome proliferator clofibrate indicated formation and biliary excretion of large amounts of metabolites more polar than omega-carboxy-tetranor-N-acetyl-LTE3 including omega-carboxy-tetranor-delta 13-N-acetyl-LTE4 and omega-carboxy-hexanor-N-acetyl-LTE3. Increased formation of beta-oxidized catabolites of N-acetyl-LTE4 and LTB4 was also observed in hepatocytes isolated after clofibrate treatment. Our results indicate that peroxisomes play a major role in the beta-oxidation of leukotrienes from the omega-end. Whereas omega-carboxy-LTB4 was beta-oxidized both in isolated peroxisomes and mitochondria, the cysteinyl leukotriene omega-carboxy-N-acetyl-LTE4 was exclusively degraded in peroxisomes.  相似文献   

3.
1. A spectrophotometric direct-reading assay for measurements of beta-oxidation by intact mitochondria is described. The procedure relies on the ability of ferricyanide to trap reducing equivalents generated by the acyl-CoA dehydrogenases (EC 1.3.99.3). The reduction of ferricyanide was recorded by using a dual-wavelength spectrophotometer. 2. Oxaloacetate or acetoacetate was used to stimulate the rate of beta-oxidation by rotenone-blocked mitochondria. Although both were effective with rat liver mitochondria, oxaloacetate gave about 75% more stimulation. With heart or kidney mitochondria, only oxaloacetate gave marked stimulation. Acetoacetate had no stimulatory effect with heart mitochondria, but a small stimulatory effect on the rate of beta-oxidation by kidney mitochondria. 3. The stoicheiometry of beta-oxidation-dependent reduction of ferricyanide was examined, and good correlations were found between experimental and theoretical amounts of ferricyanide reduced. 4. Ferricyanide appears as efficient a final electron acceptor as O2. With ferricyanide the rate of beta-oxidation by heart mitochondria can be measured without interference from the oxidation of tricarboxylic acid-cycle intermediates.  相似文献   

4.
The effect of growth hormone on the beta-oxidation of saturated and unsaturated fatty acids was studied with mitochondria isolated from control rats, hypophysectomized rats, and hypophysectomized rats treated with growth hormone. Rates of respiration supported by polyunsaturated fatty acylcarnitines, in contrast to rates observed with palmitoylcarnitine or oleoylcarnitine, were slightly lower in hypophysectomized rats than in normal rats, but were higher in hypophysectomized rats treated with growth hormone. The effects were most pronounced with docosahexaenoylcarnitine, the substrate with the highest degree of unsaturation. Since uncoupling of mitochondria with 2,4-dinitrophenol resulted in lower rates of docosahexaenoylcarnitine-supported respiration, while substitution of ATP for ADP yielded higher rates, it appears that energy is required for the effective oxidation of polyunsaturated fatty acids. Growth hormone treatment of hypophysectomized rats caused a threefold increase in the activity of 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34) in mitochondria, but not in peroxisomes. The activities of other beta-oxidation enzymes remained virtually unchanged. Rates of acetoacetate formation from linolenoylcarnitine, but not from palmitoylcarnitine, were stimulated by glutamate in mitochondria from hypophysectomized rats and hypophysectomized rats treated with growth hormone. All data together lead to the conclusion that the mitochondrial oxidation of highly polyunsaturated fatty acids is limited by the availability of NADPH and the activity of 2,4-dienoyl-CoA reductase which is induced by growth hormone treatment.  相似文献   

5.
The mitochondrial beta-oxidation of octa-2,4,6-trienoic acid was studied with the aim of elucidating the degradation of unsaturated fatty acids with conjugated double bonds. Octa-2,4,6-trienoic acid was found to be a respiratory substrate of coupled rat liver mitochondria, but not of rat heart mitochondria. Octa-2,4,6-trienoyl-CoA, the product of the inner-mitochondrial activation of the acid, was chemically synthesized and its degradation by purified enzymes of beta-oxidation was studied spectrophotometrically and by use of h.p.l.c. This compound is a substrate of NADPH-dependent 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34), which facilitates its further beta-oxidation. The product obtained after the NADPH-dependent reduction of octa-2,4,6-trienoyl-CoA and one round of beta-oxidation was hex-4-enoyl-CoA, which can be completely degraded via beta-oxidation. It is concluded that polyunsaturated fatty acids with two conjugated double bonds extending from even-numbered carbon atoms can be completely degraded via beta-oxidation because their presumed 2,4,6-trienoyl-CoA intermediates are substrates of 2,4-dienoyl-CoA reductase.  相似文献   

6.
The beta-oxidation of 2-trans,4-cis-decadienoyl-CoA, an assumed metabolite of linoleic acid, by purified enzymes from mitochondria, peroxisomes, and Escherichia coli was studied. 2-trans,4-cis-Decadienoyl-CoA is an extremely poor substrate of the beta-oxidation system reconstituted from mitochondrial enzymes. The results of a kinetic evaluation lead to the conclusion that in mitochondria 2-trans,4-cis-decadienoyl-CoA is not directly beta-oxidized, but instead is reduced by NADPH-dependent 2,4-dienoyl-CoA reductase prior to its beta-oxidation. Hence, the mitochondrial beta-oxidation of 2-trans,4-cis-decadienoyl-CoA does not require 3-hydroxyacyl-CoA epimerase, a conclusion which agrees with the finding that 3-hydroxyacyl-CoA epimerase is absent from mitochondria (Chu, C.-H., and Schulz, H. (1985) FEBS Lett. 185, 129-134). However, 2-trans,4-cis-decadienoyl-CoA can be slowly oxidized by the bifunctional beta-oxidation enzyme from rat liver peroxisomes, as well as by the fatty acid oxidation complex from E. coli. The observed rates of 2-trans,4-cis-decadienoyl-CoA degradation by these two multi-functional proteins were significantly higher than the values calculated according to steady-state velocity equations derived for coupled enzyme reactions. This is attributed to the direct transfer of L-3-hydroxy-4-cis-decenoyl-CoA from the active site of enoyl-CoA hydratase to that of 3-hydroxyacyl-CoA dehydrogenase on the same protein molecule. All observations together lead to the suggestion that the chain shortening of 2-trans,4-cis-decadienoyl-CoA in peroxisomes and in E. coli occurs simultaneously by two different pathways. The major pathway involves the NADPH-dependent 2,4-dienoyl-CoA reductase, whereas 3-hydroxyacyl-CoA epimerase functions in the metabolism of D-3-hydroxyoctanoyl-CoA which is formed via the minor pathway.  相似文献   

7.
beta-Oxidation rates for the CoA esters of elaidic, oleic and stearic acids and their full-cycle beta-oxidation intermediates and for the carnitine esters of oleic and elaidic acids were compared over a wide range of substrate and albumin concentrations in rat heart mitochondria. The esters of elaidic acid were oxidized at about half the rate of the oleic acid esters, while stearoyl-CoA was oxidized equally as rapid as oleoyl-CoA. The full-cycle beta-oxidation intermediates of elaidoyl-CoA (trans-16 : 1 delta 7, -14 : 1 delta 5, and -12 : 1 delta 3) were found to be oxidized at rates nearly equal to those for the corresponding intermediates of oleoyl-CoA. Therefore, after the first cycle of beta-oxidation, oleoyl-CoA and elaidoyl-CoA are oxidized at nearly equal rates. The activity of fatty acyl-CoA dehydrogenase was higher with elaidoyl-CoA and its full-cycle intermediates as substrates than with the corresponding cisisomers. It was concluded that the slower oxidation rate of elaidic acid is not due to slower oxidation of any of its full-cycle beta-oxidation intermediates, nor to slower activity of fatty acyl-CoA dehydrogenase, nor to outer mitochondrial carnitine acyltransferase. Possible explanations to account for the slower oxidation rate of elaidic acid are discussed.  相似文献   

8.
In an attempt to elucidate the mechanism by which the rate of fatty acid oxidation is tuned to the energy demand of the heart, the effects of changing intramitochondrial ratios of [acetyl-CoA]/[CoASH] and [NADH]/[NAD+] on the rate of beta-oxidation were studied. When 10 mM L-carnitine was added to coupled rat heart mitochondria to lower the ratio of [acetyl-CoA]/[CoASH], the rate of palmitoylcarnitine beta-oxidation, as measured by the formation of acid-soluble products, was stimulated more than fourfold at state 4 respiration while beta-oxidation at state 3 respiration was hardly affected. Neither oxaloacetate nor acetoacetate, added to mitochondria to lower the [NADH]/[NAD+] ratio, stimulated beta-oxidation. Rates of respiration at states 3 and 4 were unchanged by additions of L-carnitine, oxaloacetate, or acetoacetate. Determinations of intramitochondrial ratios of [acetyl-CoA]/[CoASH] by high performance liquid chromatography yielded values close to 10 for palmitoylcarnitine-supported respiration at state 4 and 2.5 at state 3 respiration. Addition of 10 mM L-carnitine caused a dramatic decrease of these ratios to less than 0.2 at both respiration states. Studies with purified or partially purified enzymes revealed strong inhibitions of 3-ketoacyl-CoA thiolase by acetyl-CoA and of L-3-hydroxyacyl-CoA dehydrogenase by NADH. Moreover, the activity of 3-ketoacyl-CoA thiolase at concentrations of acetyl-CoA and CoASH prevailing at state 3 respiration was 4 times higher than its activity in the presence of acetyl-CoA and CoASH observed at state 4. Altogether, this study leads to the conclusion that the rate of beta-oxidation in heart can be regulated by the intramitochondrial ratio of [acetyl-CoA]/[CoASH] which reflects the energy demand of the tissue. The thiolytic cleavage catalyzed by 3-ketoacyl-CoA thiolase may be the site at which beta-oxidation is controlled by the [acetyl-CoA]/[CoASH] ratio.  相似文献   

9.
1. The fixation of CO(2) by pyruvate carboxylase in isolated rat brain mitochondria was investigated. 2. In the presence of pyruvate, ATP, inorganic phosphate and magnesium, rat brain mitochondria fixed H(14)CO(3) (-) into tricarboxylic acid-cycle intermediates at a rate of about 250nmol/30min per mg of protein. 3. Citrate and malate were the main radioactive products with citrate containing most of the radioactivity fixed. The observed rates of H(14)CO(3) (-) fixation and citrate formation correlated with the measured activities of pyruvate carboxylase and citrate synthase in the mitochondria. 4. The carboxylation of pyruvate by the mitochondria had an apparent K(m) for pyruvate of about 0.5mm. 5. Pyruvate carboxylation was inhibited by ADP and dinitrophenol. 6. Malate, succinate, fumarate and oxaloacetate inhibited the carboxylation of pyruvate whereas glutamate stimulated it. 7. The results suggest that the metabolism of pyruvate via pyruvate carboxylase in brain mitochondria is regulated, in part, by the intramitochondrial concentrations of pyruvate, oxaloacetate and the ATP:ADP ratio.  相似文献   

10.
Cyclic stimulation by Ca(2+) of respiration in mitochondria isolated from Ehrlich ascites-tumour cells occurs only when low phosphate concentrations (approx. 0.5mm) are also included in the incubation system. Under these circumstances the extra oxygen consumed is related stoicheiometrically to the amount of Ca(2+) taken up by the mitochondria; the values are similar to those obtained with mitochondria from rat liver in the absence of added phosphate. In contrast with liver mitochondria, up to 280nmol of Ca(2+)/mg of protein can be added to ascites mitochondria without causing any deleterious effect. Respiration in mitochondria isolated from the Yoshida ascites hepatoma (HA 130) and from the Morris hepatomas 5123C and 9618A is also stimulated by Ca(2+) in a cyclic manner. However, that in mitochondria from regenerating rat liver responds to Ca(2+) in the same way as those from normal rat liver. ADP-stimulated respiration in mitochondria from Ehrlich ascites tumour cells, but not from rat liver, is inhibited by low amounts of Ca(2+).  相似文献   

11.
Incubation of rat liver mitochondria with 10 microM DL-2-bromooctanoate causes complete and irreversible inactivation of 3-ketothiolase I (acyl-CoA:acetyl-CoA C-acyltransferase). Evidence is presented that mitochondria convert bromooctanoate to 2-bromo-3-ketooctanoyl-CoA, an alpha-haloketone which is probably the active form of the inhibitor. The inactivation is accompanied by incorporation of radioactivity from [1-14C]bromooctanoate into the enzyme. Bromooctanoate does not affect the activities of the other enzymes of beta-oxidation, except for 3-ketothiolase II (acetyl-CoA:acetyl-CoA C-acetyltransferase), which becomes partially inhibited. Evidence is also presented that various enzymes of beta-oxidation can use 2-bromooctanoyl-CoA and its beta-oxidation products as substrates.  相似文献   

12.
Glycolyl-CoA can be formed during the course of the beta-oxidation by rat liver mitochondria of 4-hydroxybutyrate. The existence of this beta-oxidation has been previously supported by the occurrence of 4-hydroxybutyrate and its beta-oxidation catabolites in urine from patients with 4-hydroxybutyric aciduria, an inborn error of gamma-aminobutyric acid metabolism due to the deficiency of succinic semialdehyde dehydrogenase. The characteristics of the mitochondrial beta-oxidation of 4-hydroxybutyrate were, in rat liver, compared with those of the mitochondrial beta-oxidation of butyrate. The inhibition by malonate of the oxidation of 4-hydroxybutyrate was about twofold weaker than that of oxidation of butyrate, whereas both oxidations were abolished by preincubating the mitochondria with 1 mM valproic acid, a known inhibitor of mitochondrial beta-oxidation. Mitochondria from rat kidney cortex were demonstrated to catalyse, as previously shown for hepatic mitochondria, the carnitine-dependent oxidation of 12-hydroxylauroyl-CoA-omega-Hydroxymonocarboxylyl-CoAs are thus concluded to be precursors of glycolyl-CoA also in rat kidney cortex. In addition, 3-hydroxypyruvate was found to be a precursor of glycolyl-CoA, since it was oxidized by bovine heart pyruvate dehydrogenase with a cofactor requirement similar to that of pyruvate oxidation. Glycolyl-CoA was a substrate of carnitine acetyltransferase (pigeon breast muscle). Pig heart citrate synthase was capable of catalyzing the condensation of glycolyl-CoA with oxaloacetate. The product of this reaction induced low NADH production rates dependent on the addition of porcine heart aconitase and isocitrate dehydrogenase.  相似文献   

13.
J X Li  H Schulz 《Biochemistry》1988,27(16):5995-6000
In an attempt to develop a compound which would specifically inhibit 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in whole mitochondria, 4-bromo-2-octenoic acid was synthesized and studied. After rat liver mitochondria were preincubated with 4-bromo-2-octenoic acid for 3 min, respiration supported by either palmitoylcarnitine or pyruvate was completely abolished, whereas no inhibition was observed with rat heart mitochondria. Addition of carnitine stimulated respiration supported by pyruvate without relieving inhibition of palmitoylcarnitine-dependent respiration. Hence, this compound seems to be a specific inhibitor of beta-oxidation. When the enzymes of beta-oxidation were assayed in a soluble extract prepared from mitochondria preincubated with 4-bromo-2-octenoic acid, only 3-ketoacyl-CoA thiolase was found to be inactivated. 4-Bromo-2-octenoic acid is metabolized by mitochondrial beta-oxidation enzymes to 3-keto-4-bromooctanoyl-CoA which effectively and irreversibly inhibits 3-ketoacyl-CoA thiolase but not acetoacetyl-CoA thiolase (EC 2.3.1.9). Even though 3-keto-4-bromooctanoyl-CoA inhibits the latter enzyme reversibly, 4-bromo-2-octenoic acid does not inhibit ketogenesis in rat liver mitochondria with acetylcarnitine as a substrate. It is concluded that 4-bromo-2-octenoic acid specifically inhibits mitochondrial fatty acid oxidation by inactivating 3-ketoacyl-CoA thiolase in rat liver mitochondria.  相似文献   

14.
1. The rates of translocation of oxaloacetate and l-malate into rat liver mitochondria were measured by a direct spectrophotometric assay. 2. Penetration obeyed Michaelis-Menten kinetics, and apparent K(m) values were 40mum for oxaloacetate and 0.13mm for l-malate. 3. Arrhenius plots of the temperature-dependence of rates of penetration gave activation energies of +10kcal./mole for oxaloacetate and +8kcal./mole for l-malate. 4. The translocation of both oxaloacetate and l-malate was competitively inhibited by d-malate, succinate, malonate, meso-tartrate, maleate and citraconate. The K(i) values of these inhibitors were similar for the penetration of both oxaloacetate and l-malate. 5. Rates of penetration were stimulated by NNN'N'-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate under aerobic conditions or by ATP under anaerobic conditions. 6. The energy-dependent stimulation of translocation was abolished by uncouplers of oxidative phosphorylation. Oligomycin A, aurovertin, octyl-guanidine and atractyloside prevented the stimulation by ATP, but did not inhibit the stimulation by NNN'N'-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate. 7. Mitochondria prepared in the presence of ethylene-dioxybis(ethyleneamino)tetra-acetic acid did not exhibit the energy-dependent translocation, but this could be restored by the addition of 50mum-calcium chloride. 8. Valinomycin or gramicidin plus potassium chloride enhanced the energy-dependent translocation of oxaloacetate and l-malate. 9. Addition of oxaloacetate stimulated the adenosine triphosphatase activity of the mitochondria, and the ratio of ;extra' oxaloacetate translocation to ;extra' adenosine triphosphatase activity was 1.6:1. 10. Possible mechanisms for the energy-dependent entry of oxaloacetate and l-malate into mitochondria are discussed in relation to the above results.  相似文献   

15.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

16.
Rat liver 3-ketoacyl-CoA thiolase, a mitochondrial matrix enzyme which catalyzes a step of fatty acid beta-oxidation, was synthesized in a rabbit reticulocyte lysate cell-free system. The in vitro product was apparently the same in molecular size and charge as the subunit of the mature enzyme. The enzyme synthesized in vitro was transported into isolated rat liver mitochondria in an energy-dependent manner. In pulse experiments with isolated rat hepatocytes at 37 degrees C, the radioactivity of the newly synthesized enzyme in the cytosolic fraction remained essentially unchanged during 5-20 min of incubation, whereas that of the enzyme in the particulate fraction increased with time during the incubation. The pulse-labeled enzyme disappeared with an apparent half-life of less than 3 min from the cytosolic fraction, in pulse-chase experiments. Purified 3-ketoacyl-CoA thiolase inhibited the mitochondrial uptake and processing of the precursors of the other matrix enzymes, ornithine carbamoyltransferase, medium-chain acyl-CoA dehydrogenase and acetoacetyl-CoA thiolase. These results indicate that 3-ketoacyl-CoA thiolase has an internal signal which is recognized by the mitochondria and suggest that this enzyme and the three others are transported into the mitochondria by a common pathway.  相似文献   

17.
Mitochondrial beta-oxidation provides much of the fuel requirements of heart and skeletal muscle despite the malonyl-CoA concentration greatly exceeding the IC(50) of carnitine palmitoyl transferase for malonyl-CoA. To try to explore the relationship between inhibition of carnitine palmitoyl transferase I activity and beta-oxidation flux, we measured the flux control coefficient of carnitine palmitoyl transferase I over beta-oxidation carbon flux in suckling rat heart mitochondria. The flux control coefficient was found to be 0.08 +/- 0.05 and 50% of carnitine palmitoyl transferase I activity could be inhibited before beta-oxidation flux was affected. These observations may help to explain the presence of high rates of beta-oxidation despite the high concentration of malonyl-CoA in rat heart; we hypothesize that although not rate-limiting in vitro, carnitine palmitoyl transferase is rate-limiting in vivo because of the high malonyl-CoA concentration in heart and muscle.  相似文献   

18.
When ferricyanide is used as an artificial electron acceptor, succinate oxidation by tightly coupled liver mitochondria becomes inhibited after 1–3 min. No inhibition occurs in the presence of rotenone or glutamate establishing that oxaloacetate causes the inhibtion. Oxygen consumption by mitochondria oxidizing succinate does not become inhibited in the absence of rotenone suggesting that oxaloacetate accumulates to a greater extent when ferricyanide is added than when oxygen is the terminal acceptor. Higher levels of oxaloacetate in the ferricyanide reaction are apparently due to an increased rate of synthesis rather than a decreased rate of removal. Thus it appears that when succinate is the substrate and oxygen the terminal acceptor a control mechanism exists which blocks oxidation of malate. When ferricyanide is added as an artificial electron acceptor this control is lost and oxaloacetate accumulates to inhibit succinate oxidation.  相似文献   

19.
1. Phenethylbiguanide inhibits the synthesis of phosphoenolpyruvate from malate or 2-oxoglutarate by isolated guinea-pig liver mitochondria. This inhibition is time- and concentration-dependent, with the maximum decrease in the rate of phosphoenolpyruvate synthesis (80%) evident after 10min of incubation with 1mm-phenethylbiguanide. 2. The phosphorylation of ADP by these mitochondria is also inhibited at increasing concentrations of phenethylbiguanide and there is a progressive increase in AMP formation. Guinea-pig liver mitochondria are more sensitive to this inhibition in oxidative phosphorylation caused by phenethylbiguanide than are rat liver mitochondria. 3. Simultaneous measurements of O(2) consumption and ADP phosphorylation with guinea-pig liver mitochondria oxidizing malate plus glutamate in State 3 indicated that phenethylbiguanide at low concentrations (0.1mm) inhibits respiration at Site 1. At higher phenethylbiguanide concentrations Site 2 is also inhibited. 4. Gluconeogenesis from lactate, pyruvate, alanine and glycerol by isolated perfused guinea-pig liver is inhibited to various degrees by phenethylbiguanide. Alanine is the most sensitive to inhibition (60% inhibition of the maximum rate by 0.1mm-phenethylbiguanide), whereas glycerol is relatively insensitive (25% inhibition at 4mm). 5. Gluconeogenesis from lactate and pyruvate by perfused rat liver was also inhibited by phenethylbiguanide, but only at high concentrations (8mm). Unlike guinea-pig liver, the inhibitory effect of phenethylbiguanide on rat liver was reversible after the termination of phenethylbiguanide infusion. 6. The time-course of inhibition of gluconeogenesis from the various substrates used in this study indicated a time-dependency which was related in part to the concentration of infused phenethylbiguanidine. This time-course closely paralleled that noted for the inhibition by phenethylbiguanide of phosphoenolpyruvate synthesis in isolated guinea-pig liver mitochondria.  相似文献   

20.
1. The effect on rat liver peroxisomal beta-oxidation of feeding diets containing various amounts of dietary oils was investigated. With increasing amounts (5-25%, w/w) of soya-bean oil an apparent, but not statistically significant, increase of 1.5-fold was found both in specific activity, and in total liver activity. Increasing amounts of partially hydrogenated marine oil revealed a sigmoidal dose-response-curve, giving a 4-6-fold increase in the peroxisomal beta-oxidation activity at 20% or more of this oil in the diet. 2. Addition of small amounts of soya-bean oil to the marine-oil diet had no effect on the peroxisomal beta-oxidation activity, but decreased the C20:3(5,8,11) fatty acid/C20:4(5,8,11,14) fatty acid ratio in liver phospholipids from 0.74 to 0.01. 3. Starvation for 2 days led to a 1.5-1.8-fold increase in the peroxisomal beta-oxidation activity in rats previously fed on a standard pelleted diet, but had no effect in rats given high-fat diets. 4. Feeding partially hydrogenated marine oil or partially hydrogenated rape-seed oil resulted in higher activities than the corresponding unhydrogenated oils. 5. No significant differences in the effect on peroxisomal beta-oxidation could be detected between diets containing rape-seed oils with 15 or 45% erucic acid respectively. 6. These findings are discussed in relation to the possible effects of C22:1 and trans fatty acids in the process leading to increased peroxisomal beta-oxidation activity in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号