首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Processes associated with late events of N-glycosylation within the plant Golgi complex are a major limitation to the use of plant-based systems to produce recombinant pharmaceutical proteins for parenteral administration. Specifically, sugars added to the N-glycans of a recombinant protein during glycan maturation to complex forms (e.g. β1,2 xylose and α1,3 fucose) can render the product immunogenic. In order to avoid these sugars, the human enzyme α-L-iduronidase (IDUA, EC 3.2.1.76), with a C-terminal ER-retention sequence SEKDEL, was expressed in seeds of complex-glycan-deficient (cgl) mutant and wild-type (Col-0) Arabidopsis thaliana, under the control of regulatory (5'-, signal-peptide-encoding-, and 3'-) sequences from the arcelin 5-I gene of Phaseolus vulgaris (cgl-IDUA-SEKDEL and Col-IDUA-SEKDEL, respectively). The SEKDEL motif had no adverse effect on the specific activity of the purified enzyme. Surprisingly, the majority of the N-glycans of Col-IDUA-SEKDEL were complex N-glycans (i.e. contained xylose and/or fucose) (88 %), whereas complex N-glycans comprised a much lower proportion of the N-glycans of cgl-IDUA-SEKDEL (26 %), in which high-mannose forms were predominant. In contrast to the non-chimeric IDUA of cgl seeds, which is mainly secreted into the extracellular spaces, the addition of the SEKDEL sequence to human recombinant IDUA expressed in the same background led to retention of the protein in ER-derived vesicles/compartments and its partial localization in protein storage vacuoles. Our data support the contention that the use of a C-terminal ER retention motif as an effective strategy to prevent or reduce complex N-glycan formation, is protein specific.  相似文献   

2.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

3.
Phytohemagglutinin is a glycoprotein that accumulates in the protein storage vacuoles of bean seeds. The mature glycoprotein has a high-mannose and a complex glycan. We describe here the use of site-directed mutagenesis and expression of the mutated genes in transgenic tobacco to study the role of glycans in intracellular targeting. The reading frame for phytohemagglutinin-L was mutated so that either one or both of the glycosylation signals were disrupted to specifically prevent the attachment of asparagine-linked glycans. Expression of these genes with the beta-phaseolin promoter in the seeds of transgenic tobacco plants showed that phytohemagglutinin-L with only one glycan or without glycans was correctly targeted to the protein storage vacuoles of the seeds. Furthermore, the absence of either the complex glycan or the high-mannose glycan did not alter the processing of the other glycan. On the basis of these results, we propose that the targeting signal of this vacuolar protein is contained in its polypeptide domain and not in its glycans.  相似文献   

4.
There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ~15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.  相似文献   

5.
The Xenopus laevis egg vitelline envelope is composed of five glycoproteins (ZPA, ZPB, ZPC, ZPD, and ZPX). As shown previously, ZPC is the primary ligand for sperm binding to the egg envelope, and this binding involves the oligosaccharide moieties of the glycoprotein (Biol. Reprod., 62:766-774, 2000). To understand the molecular mechanism of sperm-egg envelope binding, we characterized the N-linked glycans of the vitelline envelope (VE) glycoproteins. The N-linked glycans of the VE were composed predominantly of a heterogeneous mixture of high-mannose (5-9) and neutral, complex oligosaccharides primarily derived from ZPC (the dominant glycoprotein). However, the ZPA N-linked glycans were composed of acidic-complex and high-mannose oligosaccharides, ZPX had only high-mannose oligosaccharides, and ZPB lacked N-linked oligosaccharides. The consensus sequence for N-linked glycosylation at the evolutionarily conserved residue N113 of the ZPC protein sequence was glycosylated solely with high-mannose oligosaccharides. This conserved glycosylation site may be of importance to the three-dimensional structure of the ZPC glycoproteins. One of the complex oligosaccharides of ZPC possessed terminal beta-N-acetyl-glucosamine residues. The same ZPC oligosaccharide species isolated from the activated egg envelopes lacked terminal beta-N-acetyl-glucosamine residues. We previously showed that the cortical granules contain beta-N-acetyl-glucosaminidase (J. Exp. Zool., 235:335-340, 1985). We propose that an alteration in the oligosaccharide structure of ZPC by glucosaminidase released from the cortical granule reaction is responsible for the loss of sperm binding ligand activity at fertilization.  相似文献   

6.
A major difficulty with isolating enzymatically or chemically released oligosaccharides from large-scale glycoprotein deglycosylation reactions is the time-consuming chromatography, desalting, and concentration steps required to prepare a glycan fraction of manageable proportions. To overcome these time and preparative chromatography equipment requirements, we have developed a rapid organic solvent precipitation/extraction procedure that allows sequential isolation of endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96)-released high-mannose and hybrid, peptide-N(4)-(N-acetyl-beta-glucosaminyl) Asn amidase (EC 3.5.1. 52)-released complex, and beta-eliminated O-linked glycans without the need for intermediate chromatography, desalting, or concentration steps. The method involves precipitation of protein and released glycans at -20 degrees C in 80% acetone and extraction of the glycans from the pellet with 60% aqueous methanol after each deglycosylation step. Three pools of essentially salt- and detergent-free oligosaccharides (high-mannose/hybrid, complex, and O-linked) can be isolated in a high yield in 4 days with this protocol, which has been extensively tested using bovine RNase B, human bile salt-stimulated lipase expressed in Pichia pastoris, hen ovalbumin, bovine fetuin, bovine thyroglobulin, and several invertase preparations from wild-type and mutant yeast strains.  相似文献   

7.
The folate binding protein (FBP), also known as the folate receptor (FR), is a glycoprotein which binds the vitamin folic acid and its analogues. FBP contains multiple N-glycosilation sites, is selectively expressed in tissues and body fluids, and mediates targeted therapies in cancer and inflammatory diseases. Much remains to be understood about the structure, composition, and the tissue specificities of N-glycans bound to FBP. Here, we performed structural characterization of N-linked glycans originating from bovine and human milk FBPs. The N-linked glycans were enzymatically released from FBPs, purified, and permethylated. Native and permethylated glycans were further analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry (MS), while tandem MS (MS/MS) was used for their structural characterization. The assignment of putative glycan structures from MS and MS/MS data was achieved using Functional Glycomics glycan database and SimGlycan software, respectively. It was found that FBP from human milk contains putative structures that have composition consistent with high-mannose (Hex(5-6)HexNAc(2)) as well as hybrid and complex N-linked glycans (NeuAc(0-1)Fuc(0-3)Hex(3-6)HexNAc(3-5)). The FBP from bovine milk contains putative structures corresponding to high-mannose (Hex(4-9)HexNAc(2)) as well as hybrid and complex N-linked glycans (Hex(3-6)HexNAc(3-6)), but these glycans mostly do not contain fucose and sialic acid. Glycomic characterization of FBP provides valuable insight into the structure of this pharmacologically important glycoprotein and may have utility in tissue-selective drug targeting and as a biomarker.  相似文献   

8.
The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.  相似文献   

9.
We report on the isolation and characterization of full-length cDNA sequences coding for N-acetylglucosaminyltransferase I (GnTI) from potato (Solanum tuberosum L.), tobacco (Nicotiana tabacum L.), and Arabidopsis. The deduced polypeptide sequences show highest homology among the solanaceous species (93% identity between potato and tobacco compared with about 75% with Arabidopsis) but share only weak homology with human GnTI (35% identity). In contrast to the corresponding enzymes from animals, all plant GnTI sequences identified are characterized by a much shorter hydrophobic membrane anchor and contain one putative N-glycosylation site that is conserved in potato and tobacco, but differs in Arabidopsis. Southern-blot analyses revealed that GntI behaves as a single-copy gene. Northern-blot analyses showed that GntI-mRNA expression is largely constitutive. Arabidopsis cgl mutants deficient in GnTI activity also possess GntI mRNA, indicating that they result from point mutations. GntI-expression constructs were tested for the ability to relieve the GnTI block in protoplasts of the Arabidopsis cgl mutant and used to obtain transgenic potato and tobacco plants that display a substantial reduction of complex glycan patterns. The latter observation indicates that production of heterologous glycoproteins with little or no antigenic glycans can be achieved in whole plants, and not in just Arabidopsis, using antisense technology.  相似文献   

10.
The cytotoxic drug tunicamycin kills cells because it is a specific inhibitor of UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-P transferase (GPT), an enzyme that catalyzes the initial step of the biosynthesis of dolichol-linked oligosaccharides. In the presence of tunicamycin, asparagine-linked glycoproteins made in the endoplasmic reticulum are not glycosylated with N-linked glycans, and therefore may not fold correctly. Such proteins may be targeted for breakdown. Cells that are treated with tunicamycin normally experience an unfolded protein response and induce genes that encode endoplasmic reticulum chaperones such as the binding protein (BiP). We isolated a cDNA clone for Arabidopsis GPT and overexpressed it in Arabidopsis. The transgenic plants have a 10-fold higher level of GPT activity and are resistant to 1 microg/mL tunicamycin, a concentration that kills control plants. Transgenic plants grown in the presence of tunicamycin have N-glycosylated proteins and the drug does not induce BiP mRNA levels as it does in control plants. BiP mRNA levels are highly induced in both control and GPT-expressing plants by azetidine-2-carboxylate. These observations suggest that excess GPT activity obviates the normal unfolded protein response that cells experience when exposed to tunicamycin.  相似文献   

11.
N-linked oligosaccharide chains released by hydrazinolysis from yellow lupin seed diphosphonucleotide phosphatase/phosphodiesterase were fluorescence labeled and separated by high performance liquid chromatography (GlycoSep N and GlycoSep H columns). Exoglycosidase sequencing elucidated the structures of 24 separated N-glycans. Thirty percent of isolated glycans were found to be of high-mannose type (three to eight mannosyl residues), 42% were complex type and 26% belonged to paucimannosidic type. Among complex type glycans, structures with Lewis(a) epitope were identified. It is very unusual to find all types of plant N-glycans in one protein. Possible reasons for such a broad spectrum of N-glycan structures are discussed.  相似文献   

12.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

13.
A Tulp  M Barnhoorn  E Bause    H Ploegh 《The EMBO journal》1986,5(8):1783-1790
Deoxymannojirimycin (dMM) or swainsonine (SW), which block conversion of high-mannose to complex-type N-linked glycans, strongly inhibited the production of immunoglobulin (Ig) when added to cultures of human lymphocytes together with the polyclonal B cell activators pokeweed mitogen (PWM) and Staphylococcus aureus (SAC). To obtain the inhibitory effect, inhibitor had to be present during the first 36 h of culture. Addition at later timepoints was less effective and showed that neither inhibitor interfered with rate of production or secretion of Ig as such. Viability and proliferation of the lymphocytes, as defined by cell number and rate of DNA synthesis, were not influenced by the presence of dMM or SW, and no changes in the relative number of helper (T4+) or suppressor (T8+) cells were observed. Thus, for normal differentiation of human B lymphocytes into Ig secreting (plasma) cells in response to PWM and SAC, conversion of high-mannose to complex N-linked glycans is essential.  相似文献   

14.
15.
Varicella-zoster virus (VZV) specifies the synthesis of at least four families of glycoproteins, which have been designated gpI, gpII, gpIII, and gpIV. In this report we describe the assembly and processing of VZV gpII, a structural protein of an apparent Mr of 140,000, which is the homolog of gB of herpes simplex virus. For these studies, we used two anti-gpII monoclonal antibodies which exhibited both complement-independent neutralization activity and inhibition of virus-induced cell-to-cell fusion. Pulse-chase labeling experiments identified a 124,000-Mr intermediate which was chased to the mature 140,000-Mr product when analyzed in nonreducing gels; in the presence of a reducing agent, the native gp140 was cleaved into two closely migrating species (gp66 and gp68). The biosynthesis of VZV gpII was further analyzed in the presence of the following inhibitors of glycoprotein processing: tunicamycin, monensin, castanospermine, swainsonine, and deoxymannojirimycin. All intermediate and mature forms were digested with endoglycosidases H and F, neuraminidase, and O-glycanase to further define high-mannose, complex, and O-linked glycans. Finally, the addition of sulfate residues was investigated. This characterization of VZV gpII revealed the following results. (i) gp128 and gp124 were early high-mannose forms, (ii) gp126 was an intermediate form with complex N-linked oligosaccharides, (iii) gp130 was a later intermediate with both N-linked and O-linked glycans, and (iv) the mature product gp140 contained a mixture of N-linked and O-linked glycans which were both sialated and sulfated. Further investigations indicated that gpII sulfation was inhibited by tunicamycin and castanospermine but not by deoxymannojirimycin or swainsonine. We also concluded that VZV gpII displayed many biological and biochemical properties similar to those of its herpes simplex virus homolog gB.  相似文献   

16.
Ovarian carcinoma is the leading cause of death from gynecological cancers in many Western countries. Aberrant glycosylation is an important aspect in malignant transformation and consequently in ovarian cancer. In this study, a detailed structure analysis of the N-linked glycans from total glycoproteins from the SKOV3 ovarian carcinoma cell line and from a recombinantly expressed secretory glycoprotein, erythropoietin (EPO), produced from the same cells has been performed using high-performance anion exchange chromatography with pulsed amperometric detection and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Total cellular N-glycans contained high-mannose type and proximally fucosylated complex type partially agalactosylated structures. On the other hand, the recombinant human EPO secreted from SKOV3 cells contained predominantly core-fucosylated tetraantennary structures, which were partially lacking one or two galactose residues, and partially contained the LacdiNAc motif. Only minor amounts of di- and triantennary complex-type glycans were found, and high-mannose-type glycans were not present in the secreted EPO protein. A large amount of N-acetylneuraminic acid in α2,3-linkage was detected as well. Endogenous glycoproteins were also found to contain the LacdiNAc motif in N-linked glycans. This work contributes to the knowledge of the glycosylation of a human ovarian cancer cell line. It also establishes the basis to further explore high-mannose-type glycans, and the LacdiNAc motif as possible markers of ovarian carcinoma.  相似文献   

17.
It has been demonstrated previously that Enterococcus faecalis produces secreted endoglycosidases that enable the bacteria to remove N-linked glycans from glycoproteins. One enzyme potentially responsible for this activity is EF0114, comprising a typical GH18 endoglycosidase domain and a GH20 domain. We have analyzed the other candidate, EF2863, and show that this predicted single domain GH18 protein is an endo-β-N-acetylglucosaminidase. EF2863 hydrolyzes the glycosidic bond between two N-acetylglucosamines (GlcNAc) in N-linked glycans of the high-mannose and hybrid type, releasing the glycan and leaving one GlcNAc attached to the protein. The activity of EF2863 is similar to that of the well known deglycosylating enzyme EndoH from Streptomyces plicatus. According to the CAZy nomenclature, the enzyme is designated EfEndo18A.  相似文献   

18.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

19.
High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.  相似文献   

20.
N-linked glycans attached to specific amino acids of the gp120 envelope trimer of a HIV virion can modulate the binding affinity of gp120 to CD4, influence coreceptor tropism, and play an important role in neutralising antibody responses. Because of the challenges associated with crystallising fully glycosylated proteins, most structural investigations have focused on describing the features of a non-glycosylated HIV-1 gp120 protein. Here, we use a computational approach to determine the influence of N-linked glycans on the dynamics of the HIV-1 gp120 protein and, in particular, the V3 loop. We compare the conformational dynamics of a non-glycosylated gp120 structure to that of two glycosylated gp120 structures, one with a single, and a second with five, covalently linked high-mannose glycans. Our findings provide a clear illustration of the significant effect that N-linked glycosylation has on the temporal and spatial properties of the underlying protein structure. We find that glycans surrounding the V3 loop modulate its dynamics, conferring to the loop a marked propensity towards a more narrow conformation relative to its non-glycosylated counterpart. The conformational effect on the V3 loop provides further support for the suggestion that N-linked glycosylation plays a role in determining HIV-1 coreceptor tropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号