首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro binding studies have shown that warfarin binds strongly to both ligandins (Y) and Z protein obtained from rat liver cytosol with dissociation constants of 11.7 and 10.1 μM respectively. Increasing concentrations of oleate ion significantly increased the dissociation constant of warfarin with either protein, whereas laurate ion showed the same behavior only with Z protein. On the other hand, the binding of warfarin to liver cytoplasmic proteins in vivo was decreased in 72-h-pre-fasted rats, although such fasting failed to produce any increase in the in vivo levels of the cytoplasmic free fatty acids (FFA). However, based on the results of the in vitro binding study, it is suggested that changes in the composition of hepatic cytoplasmic free fatty acids as a result of fasting could reduce the in vivo binding of warfarin to Y and Z proteins and hence could lead to an increase of unbound warfarin in liver cytosol.  相似文献   

2.
Dv protein and ligandin are two hepatic cytosolic proteins which bind organic anions, including endogenous thyroid hormones. Binding studies were performed using the ANS displacement technique to compare the binding of a variety of thyroid hormone analogues to purified organic anion binder and ligandin. Inhibition of ANS binding by these compounds was competitive. Both proteins bound L- and D-thyroxine with comparable affinity (Kd 30-45 microM), whereas ligandin bound 3',3',5-triiodo-L-thyronine, 3',3',5-triiodo-L-thyronine and most analogues with greater affinity. Nevertheless, the order of ligand affinities for both binders was highly correlated, suggesting that the nature of the binding site on both proteins is similar. The binding affinities of these organic anion binders are 2-3 orders of magnitude lower than an hepatic cytosolic thyroid binder reported by others, suggesting that ligandin and organic anion binder may not be important in intracellular thyroid hormone transfer.  相似文献   

3.
Circular dichroism (CD) methods were employed to study the conformation of Z protein and characterize its complexes with bilirubin and other organic anions. Z protein-bilirubin complexes exhibited a spectrum with overlapping ellipticity bands of opposite sign in the bilirubin absorption region. These results were compared with those obtained with ligandin, the other major organic anion binding protein of liver. Secondary structural differences between the two proteins were easily demonstrated since ligandin is predominantly an alpha-helical protein and Z features mainly beta-structure. Furthermore, the optical activity pattern generated by bilirubin binding to Z was virtually a mirror image of that of the ligandin bilirubin system. CD experiments were designed to study the direct transfer of bilirubin between Z protein and ligandin, and it was shown that both proteins have almost equal affinities for bilirubin. The bilirubin on Z was readily displaced by oleic acid and displaced to a lesser extent by sulfobromophthalein,  相似文献   

4.
Z protein from bovine small intestinal mucosa was purified and its binding affinities for bile acids, organic anions, and fatty acids were compared with those of bovine hepatic Z protein. Purification of Z protein from intestinal and hepatic cytosol was performed by gel filtration, chromatofocusing, and hydroxyapatite chromatography. Both purified proteins had the same molecular weight (Mr 14,000) and eluted from a chromatofocused gel at about pH 10. Binding studies were performed by the competitive displacement of 8-anilinonaphthalene-1-sulfonic acid and by equilibrium dialysis. Binding affinities for bile acids, organic anions, and fatty acids were very similar between intestinal and hepatic Z proteins. Although the real physiologic role of Z protein remains to be further elucidated, these data indicate that intestinal Z protein participates in the mechanism of intracellular bile acid transfer in enterocytes.  相似文献   

5.
Seventeen mutants with one, two or three amino acids substitutions of human protein p14.5, homologue to well-known tumor antigen from goat liver UK114 and a member of proteins YER057c/YIL051c/YjgF family, have been used for structure-functional relation studies and ligand binding analysis using cross-linking by triacryloyl-hexahydro-s-triazine (TAT), size exclusion chromatography, free fatty acid and 8-anilino-1-naphthalenesulfonic acid (ANS) binding assays. Amino acids having the most significant impact on the ligand binding activity have been determined: R107, N93, Y21 and F89. Arginine 107 has been identified as the most accessible amino acid in the cleft. Trimeric structure of protein p14.5 has been confirmed as being essential for stoichiometric small ligand binding activity and oligomeric structure of p14. Ligand binding activity may be related with the biological functions of these proteins, which still are not understood well.  相似文献   

6.
Fatty acid binding proteins (FABPs), are evolutionarily conserved small cytoplasmic proteins that occur in many tissue-specific types. One of their primary functions is to facilitate the clearance of the cytoplasmic matrix from free fatty acids and of other detergent-like compounds. Crystallographic studies of FABP proteins have revealed a well defined binding site located deep inside their β-clam structure that is hardly exposed to the bulk solution. However, NMR measurements revealed that, when the protein is equilibrated with its ligands, residues that are clearly located on the outer surface of the protein do interact with the ligand. To clarify this apparent contradiction we applied molecular dynamics simulations to follow the initial steps associated with the FABP–fatty acid interaction using, as a model, the interaction of toad liver basic FABP, or chicken liver bile acid binding protein, with a physiological concentration of palmitate ions. The simulations (~200 ns of accumulated time) show that fatty acid molecules interact, unevenly, with various loci on the protein surface, with the favored regions being the portal and the anti-portal domains. Random encounters with palmitate at these regions led to lasting adsorption to the surface, while encounters at the outer surface of the β-clam were transient. Therefore, we suggest that the protein surface is capable of sequestering free fatty acids from solution, where brief encounters evolve into adsorbed states, which later mature by migration of the ligand into a more specific binding site.  相似文献   

7.
Cytosolic proteins may play an important role in the intracellular transport of bile acids in enterocytes. The lithocholate binding properties of cytosolic protein from bovine small intestine were studied. Lithocholate binding was observed in the Y (45-50 kDa), Y' (30-35 kDa), and Z fractions (10-15 kDa) following gel filtration of cytosol. A Y protein with glutathione S-transferase activity (46 kDa) was purified by S-octyl-glutathione affinity chromatography and chromatofocusing (eluted at pH 7.5) of the Y fraction. Two Y' bile acid binding proteins with dihydrodiol dehydrogenase activity were partially purified from the Y' fraction by chromatofocusing and hydroxyapatite-HPLC. The lithocholate binding affinity of Y' protein (Kd < 0.35 microM) was higher than that of Y protein (Kd = 2 microM) and was comparable to that of Z protein (Kd = 0.2 microM). The binding affinity of Y protein was higher for bilirubin (Kd = 2.5 microM) than that for BSP (Kd = 200 microM). This was comparable to the binding affinity of bovine hepatic Y protein. These data indicate that Y' and Z proteins participate in the intracellular transport of bile acids from the brush border to the basolateral pole in enterocytes.  相似文献   

8.
Although liver fatty acid-binding protein (L-FABP) is an important binding site for various hydrophobic ligands in hepatocytes, its in vivo significance is not understood. We have therefore created L-FABP null mice and report here their initial analysis, focusing on the impact of this mutation on hepatic fatty acid binding capacity, lipid composition, and expression of other lipid-binding proteins. Gel-filtered cytosol from L-FABP null liver lacked the main fatty acid binding peak in the fraction that normally comprises both L-FABP and sterol carrier protein-2 (SCP-2). The binding capacity for cis-parinaric acid was decreased >80% in this region. Molar ratios of cholesterol/cholesterol ester, cholesteryl ester/triglyceride, and cholesterol/phospholipid were 2- to 3-fold greater, reflecting up to 3-fold absolute increases in specific lipid classes in the order cholesterol > cholesterol esters > phospholipids. In contrast, the liver pool sizes of nonesterified fatty acids and triglycerides were not altered. However, hepatic deposition of a bolus of intravenously injected [14C]oleate was markedly reduced, showing altered lipid pool turnover. An increase of approximately 75% of soluble SCP-2 but little or no change of other soluble (glutathione S-transferase, albumin) and membrane (fatty acid transport protein, CD36, aspartate aminotransferase, caveolin) fatty acid transporters was measured. These results (i) provide for the first time a quantitative assessment of the contribution of L-FABP to cytosolic fatty acid binding capacity, (ii) establish L-FABP as an important determinant of hepatic lipid composition and turnover, and (iii) suggest that SCP-2 contributes to the accumulation of cholesterol in L-FABP null liver.  相似文献   

9.
The use of spectroscopy in the study of fatty acids binding to bovine beta-lactoglobulin (BLG) appears to be a difficult task, as these acid compounds, assumed as the protein natural ligands, do not exhibit favorable optical response such as, for example, absorption or fluorescence. Therefore, the BLG fatty-acid equilibrium has been tackled by exploiting the competition between fatty acids and ANS, a widely used fluorescent hydrophobic probe, whose binding sites on the protein have been characterized recently. Two lifetime decays of the ANS-BLG complex have been found; the longer one has been attributed to the internal binding site and the shorter one to the external site. At increasing fatty acids concentration, the fractional weight associated with ANS bound to the internal site drops, in agreement with a model describing the competition of the dye with fatty acids, whereas the external site occupancy appears to be unaffected by the fatty acids binding to BLG. This model is supported by docking studies. An estimate of the acid-binding affinities for BLG has been obtained by implementing the fitting of the bound ANS intensities with a competitive binding model. A relevant dependence has been found upon the solution pH, in the range from 6 to 8, which correlates with the calyx accessibility modulated by the conformation of the EF loop. Fatty acids with longer aliphatic chains (palmitate and laurate) are found to display larger affinities for the protein and the interaction free energy nicely correlates with the number of contacts inside the protein calyx, in agreement with docking simulations.  相似文献   

10.
Schistosoma mansoni fatty acid binding protein (Sm14) was crystallized with bound oleic acid (OLA) and arachidonic acid (ACD), and their structures were solved at 1.85 and 2.4 A resolution, respectively. Sm14 is a vaccine target for schistosomiasis, the second most prevalent parasitic disease in humans. The parasite is unable to synthesize fatty acids depending on the host for these nutrients. Moreover, arachidonic acid (ACD) is required to synthesize prostaglandins employed by schistosomes to evade the host's immune defenses. In the complex, the hydrocarbon tail of bound OLA assumes two conformations, whereas ACD adopts a unique hairpin-looped structure. ACD establishes more specific interactions with the protein, among which the most important is a pi-cation bond between Arg78 and the double bond at C8. Comparison with homologous fatty acid binding proteins suggests that the binding site of Sm14 is optimized to fit ACD. To test the functional implications of our structural data, the affinity of Sm14 for 1,8-anilinonaphthalenesulfonic acid (ANS) has been measured; moreover the binding constants of six different fatty acids were determined from their ability to displace ANS. OLA and ACD exhibited the highest affinities. To determine the rates of fatty acid binding and dissociation we carried out stopped flow kinetic experiments monitoring displacement by (and of) ANS. The binding rate constant of ligands is controlled by a slow pH dependent conformational change, which we propose to have physiological relevance.  相似文献   

11.
A fatty acid-binding protein from the nematode Ascaridia galli was characterized. The gene was isolated and recombinantly expressed in Escherichia coli. According to the deduced amino acid sequence A. galli fatty acid-binding protein (AgFABP) belongs to the family of nematode polyprotein allergens, as shown by Western blotting and PCR analysis with genomic DNA and cDNA. Both native and recombinant proteins bind fatty acids and retinoids with high affinity. The fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1-sulfonyl)amino] undecanoic acid (DAUDA) shows substantial changes in its emission spectrum when bound to AgFABP; this binding is reversed by fatty acids such as oleate. Moreover, changes of the intrinsic fluorescence of retinol and retinoic acid confirm retinoid binding activity of AgFABP. Fluorescence titration experiments with DAUDA indicate stoichiometric binding to a single binding site per monomer unit with affinities (Kd) of 1.6 and 1.8 x 10(-7) m for native and the recombinant protein, respectively. The apparent binding affinities of the nonfluorescent ligands were calculated in displacement experiments with DAUDA and values in the same range were obtained for myristic, palmitic, oleic, linoleic, arachidonic and retinoic acid. Additionally, the binding affinity of AgFABP for oleate and palmitate was determined by direct and indirect radiochemical analysis and the values obtained were similar to those from the fluorescent experiments. Both proteins show a preference for the binding of long-chain saturated and unsaturated fatty acids, but not for short chain (C3-C12) and branched fatty acids, cholesterol and tryptophan.  相似文献   

12.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

13.
Circular dichroism methods were used to study the structure of rat ligandin and the binding of organic anions to the protein. Ligandin has a highly ordered secondary structure with about 40%alpha helix, 15% beta structure, and 45% random coil. Bilirubin binding occurred primarily at a single high affinity site on the protein. The binding constant for bilirubin (5 X 10-7 Mminus 1) was the highest among the ligands studied. The bilirubin-ligandin complex exhibited a well-defined circular dichroic spectrum with two major overlapping ellipticity bands of opposite sign in the bilirubin absorption region. This spectrum was virtually a mirror image of that of human or rat serum albumin-bilirubin complexes. Studies on the direct transfer of bilirubin from ligandin to rat serum albumin showed that sasociation constants of bilirubin-ligandin complexes were approximately tenfold less than those of the bilirubin-albumin system. Ligandin exhibited a broad specificity with respect to the typeof ligand bond. A series of organic anions inclucing dyes used clinically for liver function tests, fatty acids, hormones, heme derivatives, bile acids, and other ligands that were considered likely to interact with ligandin, were examined. Most induced ellipticity changes consistent with competitive displacement of bilirubin from ligandin and relative affinities of these compounds for ligandin were determined based on their effectiveness in desplacing the bilirubin. Some substances such as glutathione, conjugated sulfobromophthaleins and lithocholic acid bound to ligandin but induced anomalous spectral shifts, when added to ligandin-bilirubin complexes. Other compounds, including some that act as substrates for the glutathione transferase activity exhibited by ligandin, revealed no apparent competitive effects with respect to the bilitubin binding site.  相似文献   

14.
Photoaffinity labeling and fatty acid permeation in 3T3-L1 adipocytes   总被引:7,自引:0,他引:7  
Long chain fatty acid uptake was investigated in 3T3-L1 cells. Differentiation of these cells from fibroblasts to adipocytes was accompanied by an 8.5-fold increase in the rate of oleate uptake. This was saturable in adipocytes with apparent Kt and Vmax values of 78 nM and 16 nmol/min/mg cell protein, respectively. A number of proteins in various subcellular fractions of differentiated cells were labeled with the photoreactive fatty acid 11-m-diazirinophenoxy[11-3H]undecanoate. A 15-kDa cytoplasmic protein was induced upon differentiation to adipocytes. This protein was labeled with the photoreactive fatty acid in cytoplasm isolated from differentiated adipocytes, but not in cytoplasm from undifferentiated, fibroblastic cells. Furthermore, a high affinity fatty acid binding protein of 22 kDa was identified in plasma membranes of undifferentiated cells, and its level of labeling increased 2-fold upon differentiation. These results indicate the usefulness of the photoreactive fatty acid in identifying cellular fatty acid binding proteins, and its potential to elucidate the spatial and temporal distribution of fatty acids in intact cells.  相似文献   

15.
The photoreactive fatty acid 11-m-diazirinophenoxy-[11-3H]undecanoate was shown to be taken up specifically by the fatty acid transport system expressed in Escherichia coli grown on oleate. This photoreactive fatty acid analogue was therefore used to identify proteins involved in fatty acid uptake in E. coli. The fadL protein was labeled by the probe, confirmed to be exclusively in the outer membrane and to exhibit the heat modifiable behavior typical of outer membrane proteins. The apparent pI of the incompletely denatured form of the protein having the mobility of a 33-kDa protein was 4.6 while that of the fully denatured form was consistent with the calculated value of 5.2. The denaturation was reversible depending upon the protein to detergent ratios. The photoreactive fatty acid partitions into the outer membrane, resulting in extensive photolabeling of the lipid; a high affinity fatty acid-binding site is not apparent in total membranes labeled using free fatty acids due to this large binding capacity of the outer membrane. However, when the free fatty acid concentration was controlled by supplying it as a bovine serum albumin complex, the fadL protein exhibited saturable high affinity fatty acid binding, having an apparent Kd for the probe of 63 nM. The methods described very readily identify fatty acid-binding proteins: the fact that even when the sensitivity was increased 500-fold, no evidence was found for the presence of a fatty acid-binding protein in the inner membrane is consistent with the proposal that fatty acid permeation across the plasma membrane is not protein mediated but occurs by a simple diffusive mechanism.  相似文献   

16.
Molecular interactions are necessary for proteins to perform their functions. The identification of a putative plasma membrane fatty acid transporter as mitochondrial aspartate aminotransferase (mAsp-AT) indicated that the protein must have a fatty acid binding site. Molecular modeling suggests that such a site exists in the form of a 500-Å3 hydrophobic cleft on the surface of the molecule and identifies specific amino acid residues that are likely to be important for binding. The modeling and comparison with the cytosolic isoform indicated that two residues (Arg201 and Ala219) were likely to be important to the structure and function of the binding site. These residues were mutated to determine if they were essential to that function. Expression constructs with wild-type or mutated cDNAs were produced for bacteria and eukaryotic cells. Proteins expressed in Escherichia coli were tested for oleate binding affinity, which was decreased in the mutant proteins. 3T3 fibroblasts were transfected with expression constructs for both normal and mutated forms. Plasma membrane expression was documented by indirect immunofluorescence before [3H]oleic acid uptake kinetics were assayed. The Vmax for uptake was significantly increased by overexpression of the wild-type protein but changed little after transfection with mutated proteins, despite their presence on the plasma membrane. The hydrophobic cleft in mAsp-AT can serve as a fatty acid binding site. Specific residues are essential for normal fatty acid binding, without which fatty acid uptake is compromised. These results confirm the function of this protein as a fatty acid binding protein.  相似文献   

17.
Purified ligandin (Y-protein) a 46000-dalton protein, has been shown to consist of two subunit species (mol. wts. 22 000 and 24 000) on discontinuous polyacrylamide gel electrophoresis in sodium dodecyl sulphate. This technique was used to define further the nature of these subunits. The Y sulphobromophthalein-binding fraction of rat hepatic cytosol was shown to contain three major subunit bands designated subunit Ya, subunit Yb and subunit Yc in ascending order of size. Purified ligandin was found to comprise Ya and Yc subunit species, and also gave two bands on isoelectric focusing. The two subunit species in purified ligandin were partially separated by an additional purification step. Antiserum to ligandin reacted mono-specifically with the purified protein, as well as hepatic, renal and small intestinal mucosa cytosol, but gave lines of identity and partial identity with cytosol from testis, ovary and adrenal gland. The Y fraction of testis was found to contain only Yb and Yc species, while all three major bands were found in liver, kidney and small intestinal mucosa. Phenobarbital treatment increased the concentration of Ya and Yb in the liver, but had little effect on Yc. These findings suggest that the Ya and Yc ligandin subunits are the monomers of two proteins: YaYa and YcYc.  相似文献   

18.
Mechanism for binding of fatty acids to hepatocyte plasma membranes   总被引:2,自引:0,他引:2  
The purpose of this study was to examine the interaction between fatty acids and plasma membranes from liver cells. We were unable to reproduce the reported effect of heating on the capacity of these membranes to bind [3H]oleate (Stremmel et al. 1985 Proc. Natl. Acad. Sci. USA. 82: 4-8). In fact, the distribution of [3H]oleate between plasma membranes and unilamellar vesicles of lipids extracted from these membranes was in favor of the lipids, indicating the absence of a detectable amount of binding to a putative fatty acid binding protein in plasma membranes. Radius of curvature of vesicles (125 A vs 475 A) had no effect on the partitioning of fatty acid. In addition, the distribution of [3H]oleate between plasma membranes and other phases had the properties of a partition coefficient over a 200-fold range of [3H]oleate. There was no evidence in this experiment for a binding isotherm, i.e., binding of [3H]oleate at a specific site, superimposed on the nonspecific partitioning of [3H]oleate into the lipids of the plasma membrane. There was no competition between [14C]oleate and [3H]palmitate for entry into plasma membranes. Finally, rates of uptake of [14C]oleate and [3H]palmitate by perfused rat liver were not affected by the presence of the other fatty acid in perfusates. These data indicate that the avidity of hepatocyte plasma membranes for [3H]oleate is a simple consequence of the physical chemical properties of oleate, lipids, and water. The data exclude the idea that the uptake of fatty acids into cells is the result of binding proteins and/or catalyzed reactions at the water-membrane interface of the cell or within the plane of the plasma membrane.  相似文献   

19.
1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity.  相似文献   

20.
Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty acids closely parallel their prevalences in the hepatopancreas of C. quadricarinatus as measured under specific diet conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号