首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The spectra resulting from the interaction of a series of substituted dioxolanes with microsomal cytochromes P-450 or P-420, as well as purified cytochrome P-450, were measured. With the exception of dioxolane, 4-methyldioxolane and 4-ethyldioxolane, these compounds interacted with ferric cytochrome P-450 to give complexes exhibiting type I optical difference spectra, and, after incubation with NADPH, spectra with peaks at about 430 nm. These complexes, as well as those formed from dioxolanes in the presence of cumene hydroperoxide, inhibit the binding of CO to the cytochrome. Consideration of the known chemistry of dioxolanes, together with recent advances in the understanding of double Soret spectra, lead to a possible explanation for the differences between the spectra of dioxolanes and their aromatic analogs, the methylenedioxyphenyl compounds.  相似文献   

2.
A form of cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation (tentatively called "P-450(14)DM") was purified from microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae to gel electrophoretic homogeneity. An apparent monomeric Mr = 58,000 was estimated for the purified cytochrome by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both optical and EPR spectra of oxidized P-450(14)DM are characteristic of low spin ferric heme proteins, and its reduced CO complex showed a Soret absorption peak at 447 nm. As in the case of hepatic microsomal cytochromes P-450, the ethyl isocyanide complex of reduced P-450(14)DM was in a pH-dependent equilibrium between two states having Soret peaks at 429 and 453 nm, the equilibrium being considerably shifted toward the 453-nm state. Oxidized P-450(14)DM was peculiar in that in its CD spectrum there was a negative shoulder at 425 nm and the 350- and 414-nm troughs possessed larger and relatively smaller [theta] values, respectively, than those reported for other low spin ferric cytochromes P-450. Lanosterol was the only compound which caused a Type I spectral change in oxidized P-450(14)DM. The lanosterol-induced low to high spin state change was, however, only slight even at saturating concentrations of the sterol, indicating that the lanosterol-P-450(14)DM adduct was in a spin state equilibrium.  相似文献   

3.
The UV-visible absorption, magnetic circular dichroism (MCD) and CD spectral characteristics of a variety of low spin ferrous P-450-ligand complexes have been carefully determined in order to establish whether all such complexes are hyperporphyrins as previously suggested in the literature. Two general spectral classes are found to occur. Complexes in the first class are, indeed, hyperporphyrin in nature, with pi-acceptor ligands such as CO, NO, phosphine, nitrosoalkanes and isocyanides trans to cysteinate. Individual, but minor, variations in the spectral properties of the hyperporphyrins suggest that subclasses exist, wherein the nature of the trans ligand to thiolate affects the orbital overlap pattern and thus the observed spectra. Adducts in the second spectral class, which have sigma-donor nitrogen and sulfur ligands, also have the red-shifted Soret absorption maximum but are spectrally distinct in all other respects from the hyperporphyrins. Comparison of the MCD spectra of the second category to those of ferrous cytochromes b5, c, and P-420 suggests that the axial cysteinate ligand is still present in the nonhyper ferrous P-450 species. Thus, the combination of a strongly electron-donating cysteinate ligand and a trans sigma-donor, not the orbital mixing mechanism, is most likely the origin of the red-shifted Soret absorption maximum of nonhyper ferrous P-450 ligand complexes. Further, the nature of the total electronic interactions between both axial ligands and the heme iron of ferrous P-450 and not solely the cysteinate ligand determines whether the ligand complexes will be of the hyper or nonhyperporphyrin category. These findings are strengthened by the simultaneous use of three different spectroscopic techniques; together they provide a more detailed explanation for the unusual spectroscopic properties of cytochrome P-450.  相似文献   

4.
Circular dichroism (CD) spectra were measured for cytochromes P-450 (P-450) purified from phenobarbital- and 3-methylcholanthrene-induced rabbit liver microsomes. No striking difference in alpha-helix content was seen between phenobarbital-induced P-450 (PB P-450) (50%), phenobarbital-induced P-448 (PB P-448) (40%) and 3-methylcholanthrene-induced P-448 (MC P-448) (45--50%) in terms of ultraviolet CD spectra. Strong negative CD spectra associated with 3-methylcholanthrene transitions for MC P-448 in the near-ultraviolet region (250--310 nm) and weaker negative CD spectra associated with Soret transitions for PBP-448 ([theta] = 50 000) and MCP-448 ([theta] = 160 000), indicated that structures of these preparations are strikingly different from each other. Reduction of P-450 and P-448 led to a remarkable decrease of the Soret CD trough, suggesting that reduction was accompanied by a striking conformational change in the vicinity of the heme. Since CO complexes of reduced P-450 and P-448 showed a CD trough and an S-shaped CD, respectively, associated with the absorption peak at 450 nm, the heme vicinities are remarkably different from each other. The CD spectra in the visible region are also discussed. It was noticed that P-420, the denatured form of P-450, exhibited no CD spectra in the Soret and visible regions.  相似文献   

5.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

6.
The interactions of 5 carcinogenic and 1 non-carcinogenic nitrosamines with hepatic microsomal cytochrome (cyt.) P-450 were investigated, using both optical difference and electron paramagnetic resonance (EPR) spectroscopic methods. Liver microsomes from phenobarbital (PB)-pretreated mice and 3-methylcholanthrene (3-MC)-pretreated rats were used, in order to have an increased specific content of cyt. P-450 and cyt. P-448 respectively. The optical and EPR spectral data obtained in the oxidised state suggest that nitrosamines are able to bind both as substrates and as ligands to the hemoprotein cyt. P-450, depending on the concentration of nitrosamine, its chemical identity and the cytochrome species present. After reduction with dithionite or NADPH in the optical difference spectrum a Soret band developed between 444 and 453 nm to an extent, which is dependent on the particular nitrosamine present. This initial nitrosamine-induced spectrum might represent a ferrous nitric oxide (NO)-cyt. P-450 complex. It appears unstable and is converted kinetically into a spectrum lacking a Soret band, but with a predominant absorbance minimum at about 425 nm. A visible band is located at 585 nm. In the EPR spectrum a sharp 3-line signal around g = 2.01 appears concomitantly. Both spectral parameters are typical of a NO-cyt. P-420 complex. These results, in conjunction with metabolic studies, indicate that nitrosamines are denitrosated by a reductive process in which cyt. P-450 appears to be involved. The resulting NO-cyt. P-450 complex denatures to a NO-cyt. P-420 complex when the dioxygen level is not sufficiently high to complete successfully.  相似文献   

7.
Cytochrome P-450j has been purified to electrophoretic homogeneity from isoniazid-treated adult male rats; and this enzyme appears to be a major protein induced in hepatic microsomes after administration of isoniazid, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein has a minimum molecular weight of approximately 51,500, and the ferrous-carbonyl complex of cytochrome P-450j has a Soret maximum at 451-452 nm. The oxidized heme iron appears to be predominately in the high spin state as deduced from the Soret maximum at 395 nm. Ethylisocyanide binds to ferrous cytochrome P-450j to yield spectral maxima at approximately 458 and 430 nm with a resultant 458/430 ratio of 0.7 at pH 7.4. Cytochrome P-450j has no measurable catalytic activity for the metabolism of benzo[a]pyrene (3- and 9-hydroxylation), hexobarbital, testosterone, and 5 alpha-androstane-3 alpha,17 beta-diol-3,17-disulfate. Low, but detectable, catalytic activity is obtained for the metabolism of 7-ethoxycoumarin, benzphetamine, p-nitroanisole, zoxazolamine, and 2-hydroxylation of 17 beta-estradiol. In contrast, cytochrome P-450j effectively catalyzes p-hydroxylation of aniline with a turnover of 12.7 nmol/min/nmol cytochrome P-450j. Hydroxyl radical scavengers, Fe-EDTA, superoxide dismutase, and catalase have no effect on aniline p-hydroxylation catalyzed by cytochrome P-450j. Cytochrome P-450j is distinct from nine other rat hepatic microsomal cytochromes P-450 (P-450a-P-450i) previously purified in this laboratory, as well as different isozymes described by other investigators, based on several parameters including minimum molecular weight, spectral properties, and catalytic activity. In Ouchterlony double diffusion plates, antibodies against cytochromes P-450a-P-450f show no cross-reaction with cytochrome P-450j. Structural differences among cytochromes P-450a-P-450j are apparent from the NH2-terminal sequence of cytochrome P-450j, as well as the electrophoretic profiles of proteolytic digests of the hemoproteins.  相似文献   

8.
A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo.  相似文献   

9.
Polyclonal antibody has been shown previously to react identically with cytochromes P-450b and P-450e purified from Long Evans rats and a strain variant of cytochrome P-450b purified from Holtzman rats (P-450bH). In the present study, an array of 12 different monoclonal antibodies produced against cytochrome P-450b has been used to distinguish among these closely related phenobarbital-inducible rat hepatic cytochromes P-450. In immunoblots and enzyme-linked immunosorbent assays, 10 monoclonal antibodies bind to cytochromes P-450b, P-450e, and P-450bH; one monoclonal antibody (B50) recognizes cytochromes P-450b and P-450bH but not cytochrome P-450e; and one monoclonal antibody (B51) is specific for cytochrome P-450b. In addition, one monoclonal antibody (BEF29) reacts strongly with cytochrome P-450f, and another antibody (BEA33) reacts weakly with cytochrome P-450a. No cross-reactions with cytochromes P-450c, P-450d, and P-450g-P-450j were detected with any of the monoclonal antibodies in these assays. Six spatially distinct epitopes on cytochrome P-450b were identified, and differences in antibody reactivity provided evidence for three additional overlapping epitopes. Several monoclonal antibodies are potent inhibitors of testosterone and benzphetamine metabolism supported by cytochrome P-450b in a reconstituted system. B50 and BE52 do not inhibit metabolism of the two substrates by microsomes from untreated rats, but inhibit benzphetamine N-demethylation and testosterone metabolism to 16 alpha- and 16 beta-hydroxytestosterone as well as androstenedione formation 67-94% by microsomes from phenobarbital-treated rats. No other pathways of testosterone metabolism are inhibited by these monoclonal antibodies. The differential inhibition of microsomal metabolism of benzphetamine and testosterone by these monoclonal antibodies is a reflection of the content and inducibility of cytochromes P-450b and P-450e as well as other cytochrome P-450 isozymes.  相似文献   

10.
Maximum concentrations of microsomal cytochrome P-450 are present in 3-4 day-old mung beans (Phaseolus aureus). On illumination of dark-grown seedlings, cytochrome P-450 and later cytochrome P-450 undergo a rapid decrease in concentration in vivo, with an apparent half-time of about 6 h. Conversely light-grown seedlings, transferred to darkness, show a slow accumulation of cytochrome P-450, doubling time of about 30 h, with a later accumulation of cytochrome P-420. Microsomal cytochromes b559, b560.5 and b562.5 do not significantly alter on light-dark transitions. Possible functions for dark-induced cytochrome P-450 are discussed.  相似文献   

11.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

12.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

13.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

14.
The previously described, iodine-labeled alkylating stable nitroxyl radicals located at different distances between the N-O. group and the iodine atom were used for a comparative study of the structure of microsomal cytochromes P-450 and P-448 active centers. The radicals were shown to change the optical spectra of Fe3+ located in the active site of the enzyme that are similar to those induced by cytochrome P-450 substrates. Some differences in the type of the radicals binding to control, phenobarbital- and 3-methylcholanthrene-induced microsomes were revealed. The alkylating radical substrate analogs covalently bound to microsomal cytochrome P-450 in the vicinity of the active center, resulting in the inhibition of oxidation of type I and II substrates (e. g., aniline and naphthalene). The value of the spectral binding constant (Ks) for naphthalene in the presence of the radical covalently bound to the cytochrome P-450 active center showed a tendency to increase. Using the ESR technique, the interaction between Fe3+ and the radical localized in the active site of cytochrome P-450 was demonstrated. The contribution of Fe3+ to the relaxation of the radicals covalently bound to cytochrome P-450 was evaluated from the values of the spin label ESR spectra saturation curves at 77K. The distances between the N-O. group of these radicals and Fe3+ in the enzyme active center for the three types of microsomes were determined. The data obtained point to structural peculiarities of the active center of cytochrome P-450, depending on the microsomal type.  相似文献   

15.
Three cDNAs for chimeras between cytochrome P-450s (pHP3 and pHP2-1) were constructed and inserted between the alcohol dehydrogenase promoter and terminator regions of the yeast expression vector pAAH5 to form expression plasmids, pAH3P2, pAH3E2, and pAH3A2. pAH3P2 contained the entire coding sequence of cytochrome P-450 (pHP2-1) except for the 3rd, the 8th, the 36th, and the 42nd residues of the total of 490 amino acids. Nucleotide sequences of pAH3P2 were replaced with those of cytochrome P-450 (pHP3) in the region coding for the NH2-terminal 210 and 262 amino acid residues to yield pAH3E2 and pAH3A2, respectively. The three expression plasmids were introduced into Saccharomyces cerevisiae AH22 cells and cytochrome P-450 s (3P2, 3E2, and 3A2) were purified from the microsomal fractions of the transformed yeast cells. In the oxidized state either of the cytochromes exhibited a low- and high-spin mixed-type spectrum of cytochrome P-450. The reduced CO complex of the cytochromes showed a Soret absorption maximum at 450 nm. When laurate or caprate was added to ferric cytochrome P-450 s (3P2 and 3E2), the spectrum was converted to that of the typical high-spin type, indicating the binding of the fatty acids to the substrate site of the cytochromes. On the other hand, the addition of the fatty acids to ferric cytochrome P-450 (3A2) induced no spectral change. Only chemicals having a carboxyl group caused such spectral conversion of cytochrome P-450 (3P2) among dodecyl compounds examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The iodine-containing stable iminoxyl radicals with various distances between the N-O-group and the iodine atom are proposed to be used to study the structure of the active center of the microsomal cytochrome P-450. The radicals used induce changes in the optical spectra of the Fe3+ ion located in the active center of the enzyme, as in the case of type 1 substrates and inhibit essentially the microsomal oxidation of cytochrome P-450 substrates of type 1 and 2. This inhibition is neither due to suppression of the NADPH-cytochrome c reductase activity nor to cytochrome P-450 conversion to cytochrome P-420. Cytochrome P-450 substrates (aminopyrine) protect the enzyme against the radical-induced inactivation. The iodine-containing radicals are covalently bound to cytochrome P-450 in the vicinity of active center. The values of dissociation constants for the reversible enzyme-radical constants and the rate constants for the monomolecular transformation in the complex, k, were determined. The EPR method was used to detect the coupling between Fe3+ and the radical located in the active center of cytochrome P-450. The saturation curves of radical SPR spectra at 77 degrees K were employed to determine the contribution of Fe3+ to the relaxation time, T1, of the radicals covalently bound to cytochrome P-450 and to estimate the distances between the Fe3+ ion and the N-O-group of these radicals in the enzyme active center.  相似文献   

17.
Hydrocarbons of different structures interact with microsomal and solubilized cytochrome P-450 from liver of phenobarbital-pretreated rats forming a high spin enzyme-substrate type complex. The affinity of cytochrome P-450 for hydrocarbons increases with increasing lipophilicity independently of the chemical structure. The binding capacity of microsomal P-450 for aliphatic hydrocarbons is generally higher than for aromates. Mutual influence in binding of two different hydrocarbons by microsomal P-450 is stronger among aromatic than among aliphatic hydrocarbons; in both cases it appears to be effected rather by specific interaction of both substances with the binding site than by a nonspecific influence on the microsomal membrane. Only one fraction of low spin form of solubilized cytochrome P-450 from rat liver interacts with hydrocarbons. The binding capacity for aromatic and aliphatic substances corresponds to that found in microsomes. The affinity for the most lipiphilic substrate, perhydrophenanthrene, is equal in microsomal and solubilized preparation; with decreasing lipophilicity the affinity of solubilized P-450 decreases faster than in microsomes. The LM2 fraction of cytochrome P-450 from phenobarbital-pretreated rabbits interacts only with aliphatic hydrocarbons with wide variation of the binding capacity. The affinity is generally one order of magnitude lower than in microsomes. Active fractions of solubilized P-450 from both species are rapidly converted to P-420 by dithionite. The extent of this conversion is strongly reduced by saturation with substrate.  相似文献   

18.
The secondary structure of rabbit liver microsomal cytochrome P-450 LM2, rat liver microsomal cytochromes P-450b and P-450e (phenobarbital-inducible), and rat liver microsomal cytochromes P-450c, P-450d (3-methylcholanthrene-inducible) was predicted by a combination of methods (i) identifying the transmembrane parts of integral membrane proteins, and (ii) statistically predicting the secondary structure of globular proteins. The results are similar for all phenobarbital-inducible enzymes and make it possible to construct two structural models with seven or four transmembrane alpha-helices. The cytochromes of the second group obviously form a second structural family with four membrane-spanning alpha-helices. In both cases, a large ectodomain with several consecutive alpha-helices, which may provide the heme-binding pocket, is exposed out of the membrane.  相似文献   

19.
Circular dichroism (CD) spectroscopy has been used to probe the active site of bacterial ferric cytochrome P-450CAM. The endogenous sixth ligand to the heme iron has been displaced by an extensive series of exogenous oxygen, nitrogen, sulfur and other neutral and anionic donor ligands in an attempt to examine systematically the steric and electronic factors that influence the coupling of the heme chromophore to its protein environment. General trends for each ligand class are reported and discussed. Both the wavelengths and the intensities of the CD bands vary with ligand type and structure. All but one of the complexes exhibit negative CD maxima in their delta and Soret bands. Comparison to ferric myoglobin-thiolate complexes indicates that the negative sign observed for the cytochrome P-450 spectra is not a property of the thiolate fifth ligand, but rather arises from a different interaction of the cytochrome P-450 heme with its protein environment. Complexes with neutral oxygen donors display CD spectra that most closely resemble the spectrum of the native low-spin enzyme. Hyperporphyrin (split Soret) cytochrome P-450 complexes with thiolates, phosphines and cyanide trans to cysteinate have complex CD spectra, reflecting the intrinsic non-degeneracy of the Soret pi pi transitions. The extensive work presented herein provides an empirical foundation for use in analyzing the interaction of heme chromophores with their protein surroundings, not only for the cytochrome P-450 monooxygenases but also for heme proteins in general.  相似文献   

20.
Cytochrome P-450 is the terminal oxidase of an electron transport system that is responsible for the oxidative metabolism of a large variety of endogenous and exogenous compounds. This broad substrate selectivity is caused by multiple isozymes of cytochrome P-450 and the wide substrate selectivity of many of these isozymes. We have isolated 11 isozymes of cytochrome P-450 from the livers of rats (cytochromes P-450a-P-450k). We have found both polyclonal and monoclonal antibodies increasingly useful to distinguish among these isozymes and to quantitate enzyme levels in liver microsomal preparations where as many as 15 or more cytochrome P-450 isozymes are present. Several of these isozymes show considerable immunochemical relatedness to each other, and operationally they can be grouped into families of immunochemically related isozymes that include cytochromes P-450b and P-450e in one family, cytochromes P-450c and P-450d in another, and cytochromes P-450f-P-450i, and P-450k in a third family. Immunoquantitation of some of these isozymes has revealed dramatic increases of over 50-fold in the levels of certain of these isozymes when exogenous compounds are administered to rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号