首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival rates have rarely been estimated for pinniped populations due to the constraints of obtaining unbiased sample data. In this paper, we present an approach for estimating survival probabilities from individual recognition data in the form of photographic documentation of pelage patterns. This method was applied to estimate adult (age 2+) survival for harbour seals in the Moray Firth, NE Scotland. An astronomical telescope was used to obtain digital images of individual seals, and high-quality images were used to document the annual presence or absence of individuals at a single haul-out site over a 4-year period. A total of 95 females, 10 males and 57 individuals of unknown sex were photographically documented during the study period. Survival and recapture probabilities were estimated using Jolly–Seber mark–recapture models in a Bayesian statistical framework. Computer-intensive Markov Chain Monte Carlo methods were used to estimate the probability distributions for the survival and recapture probabilities, conveying the full extent of the uncertainty resulting from unavoidably sparse observational data. The deviance information criterion was used to identify a best-fitting model that accounted for variation in the probability of capture between sexes, with constant survival. The model estimated adult survival as 0.98 (95% probability interval of 0.94–1.00) using our photo-identification data alone, and 0.97 (0.92–0.99) with the use of an informative prior distribution based on previously published estimates of harbour seal survival. This paper represents the first survival estimate for harbour seals in the UK, and the first survival estimate using photo-identification data in any species of pinniped.  相似文献   

2.
Since European settlement in Australia, the geographical range of ghost bats (Macroderma gigas) has contracted northwards. Ghost bats are thought to occur in disjunct populations with little interpopulation migration, raising concerns over the current status and future viability of the southernmost colony, which has also been threatened by mining activity. To address these concerns, demographic parameters of the southernmost colony were estimated from a mark–recapture study conducted during 1975–1981. Female bats gave birth to a single young in late spring, but only 40% (22–70%, 95% CI) of females bred in their second year, increasing to 93% (87–97%, 95% CI) for females ≥ 2 years old. Sixty‐five percent of juveniles caught were female. Annual adult survival ranged between 0.57–0.77 for females and 0.43–0.66 for males, and was lowest over winter–spring and greatest in autumn–winter. Juvenile survival for the first year ranged between 0.35–0.46 for females and 0.29–0.42 for males. Adult survival varied among seasons, was negatively associated with rainfall, but was not associated with temperature beyond being lower in late winter. Poor survival may result from the inferior daytime roosts that bats must use if water seepage forces them to leave their normal roosts. Although these age‐specific rates of fecundity and survival suggested a declining population, mark–recapture estimates of the population trend indicated stability over the study period. Counts at daytime roosts also suggested a population decline, but were considered unreliable because of an increasing tendency of bats to avoid detection. It is therefore likely that some assumptions in estimating survival were violated. These results provide a caution against the uncritical use of population projections derived from mark–recapture estimates of demographic parameters, and the use of untested indices as the basis for conservation decisions.  相似文献   

3.
For most rare and elusive species, estimating age-specific survival is a challenging task, although it is an important requirement to understand the drivers of population dynamics, and to inform conservation actions. Apennine brown bears Ursus arctos marsicanus are a small, isolated population under a severe risk of extinction, for which the main demographic mechanisms underlying population dynamics are still unknown, and population trends have not been formally assessed. We present a 12-year analysis of their survival rates using non-invasive genetic sampling data collected through four different sampling techniques. By using multi-event capture–recapture models, we estimated survival probabilities for two broadly defined age classes (cubs and older individuals), even though the age of the majority of sampled bears was unknown. We also applied the Pradel model to provide a preliminary assessment of population trend during the study period. Survival was different between cubs [ϕ = 0.51, 95% CI (0.22, 0.79)], adult males [ϕ = 0.85, 95% CI (0.76, 0.91)] and adult females [ϕ = 0.92, 95% CI (0.87, 0.95)], no temporal variation in survival emerged, suggesting that bear survival remained substantially stable throughout the study period. The Pradel analysis of population trend yielded an estimate of λ = 1.009 [SE = 0.018; 95% CI (0.974, 1.046)]. Our results indicate that, despite the status of full legal protection, the basically stable demography of this relict population is compatible with the observed lack of range expansion, and that a relatively high cub mortality could be among the main factors depressing recruitment and hence population growth.  相似文献   

4.
Male-biased sex ratios in adult odonate populations have been the subject of vigorous discussion between the students of this order of insects. The debate has centered on whether the observed male bias in many populations is real, perhaps due to unequal survival rates, or whether it is an artifact caused by differences in recapture probabilities. A mark–recapture study to assess the relative contribution of survivorship and recapture rates on male-biased sex ratio was performed in a Cuban population of the damselfly Hypolestes trinitatis. Maximum likelihood theory and Akaike information criterion were used for parameter estimation and model selection, respectively. Females in the sample were outnumbered two to one by males. Estimated recapture and survival rates were 0.188 (females) and 0.638 (males), and 0.933 (females) and 0.944 (males), respectively. Recapture rates only partially explained the bias since the population sex ratio estimated after correcting for differences in this parameter was male biased (1.5). The observed higher survival probabilities in males could have generated the male-biased population sex ratio. Therefore, we concluded that the observed male-biased population sex ratio in H. trinitatis is real.  相似文献   

5.
The Florida mottled duck (Anas fulvigula fulvigula) inhabits a relatively small range of approximately 90,000 km2 within peninsular Florida, USA, and is threatened by habitat loss and genetic introgression with feral mallards (Anas platyrhynchos). Moreover, the Florida mottled duck population status has not been assessed for more than a decade. We used band-recovery and recapture data from 2000–2013 to examine geographic and demographic factors that influence the survival of Florida mottled ducks and to determine whether survival and harvest probabilities have changed over time. Mean survival probabilities were higher for birds banded in the southern portion of their Florida range than for those banded in the northern portion and higher for adult males than for adult females in both areas. Harvest probabilities increased in the northern extent of its range in Florida for adults and juveniles and remained relatively constant in the southern portion of its range during the study period. Mean harvest probabilities for adult males in both areas were higher than for adult females. Mean harvest probability for juvenile females was higher than that for juvenile males in the north but was similar between the sexes in the south. Our results suggest that mortality rates are generally greater in the northern portion of the Florida mottled duck range because of regional differences in habitat distribution and permanence and in how mottled ducks and humans use wetlands in these areas. We suggest increasing conservation efforts in the north portion of the Florida mottled duck range and improving inferences from leg banding by incorporating live recapture data. © 2020 The Wildlife Society.  相似文献   

6.
We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued. © 2011 The Wildlife Society.  相似文献   

7.
Many species only show sexual dimorphism at the age of maturity, such that juveniles typically resemble females. Under these circumstances, estimating accurate age‐specific demographic parameters is challenging. Here, we propose a multievent model parameterization able to estimate age‐dependent survival using capture–recapture data with uncertainty in age and sex assignment of individuals. We illustrate this modeling approach with capture–recapture data from the ring‐necked parakeet Psittacula krameri. We analyzed capture, recapture, and resighting data (439 recaptures/resightings) of 156 ring‐necked parakeets tagged with neck collars in Barcelona city from 2003 to 2016 to estimate the juvenile and adult survival rate. Our models successfully estimated the survival probabilities of the different age classes considered. Survival probability was similar between adults (0.83, 95% CI = 0.77–0.87) and juveniles during their second (0.79, 95% CI = 0.58–0.87) and third winter (0.83, 95% CI = 0.65–0.88). The youngest juveniles (1st winter) showed a slightly lower survival (0.57, 95% CI = 0.37–0.79). Among adults, females showed a slightly higher survival than males (0.87, 95% CI = 0.78–0.93; and 0.80, 95% CI = 0.73–0.86, respectively). These high survival figures predict high population persistence in this species and urge management policies. The analysis also stresses the usefulness of multievent models to estimate juvenile survival when age cannot be fully ascertained.  相似文献   

8.
Despite the importance of green-winged teal (Anas crecca) as a harvested species in North America, recent information on variation in vital rates among regions is lacking. We used band recovery data and hierarchical autoregressive models to examine temporal and age-sex-class variation in survival, hunting mortality, and nonhunting mortality probabilities of green-winged teal banded at Kgun Lake on the Yukon-Kuskokwim Delta, Alaska, USA, from 1997–2019. We used data from 10,554 adult and juvenile green-winged teal of known sex and age banded and released at Kgun Lake, and 1,245 hunter recoveries. Estimates of annual survival probability for adult females and males ranged from 0.44 (95% CI = 0.29–0.54) to 0.49 (95% CI = 0.37–0.68) and 0.56 (95% CI = 0.50–0.61) to 0.58 (95% CI = 0.50–0.64), respectively, during our study period. Estimates of annual survival probability for juvenile females and males ranged from 0.36 (95% CI = 0.18–0.56) to 0.46 (95% CI = 0.31–0.71) and 0.51 (95% CI = 0.38–0.61) to 0.56 (95% CI = 0.44–0.71), respectively. Hunting mortality probability was greatest for juvenile males and least for adult females. Hunting mortality probability of juvenile males increased from 0.09 (95% CI = 0.05–0.13) in 1997 to 0.14 (95% CI = 0.11–0.18) in 2015. Nonhunting mortality probability was greater and more variable than hunting mortality probability for all age-sex classes, indicating nonhunting mortality contributed most to total mortality of green-winged teal banded at Kgun Lake during our study. Additionally, survival probability of female green-winged teal banded at Kgun Lake is less than published estimates for green-winged teal banded in the boreal forest of Alaska. We recommend continuing consistent banding operations for green-winged teal on the Yukon-Kuskokwim Delta and other important breeding areas to further understand factors influencing nonhunting mortality and how they may vary seasonally and geographically.  相似文献   

9.
The survival for adult loggerhead sea turtles from a saturation tagging study on Bald Head Island, NC, USA, was estimated using a multistate model with unobservable states to relax assumptions that are violated when survival is estimated from multistate models and produce more accurate estimates of survival, recapture, and breeding transition probabilities. The influence of time, trap dependence, and low site fidelity to the study nesting beach on survival and recapture were examined. The best model given the data included an imprecise site-fidelity effect on survival, constrained the reproductive cycle to 4 years, and contained a time effect on recapture rates. The estimate of annual survival for adult females was of 0.85, producing the highest estimate in the literature for loggerhead sea turtles. Multistate models should be applied to other nesting beach data for sea turtles to improve survival estimates and in turn the ability to model and manage populations.  相似文献   

10.
Life‐histories and demographic parameters of southern temperate bird species have been little studied. We estimated return rates between years and sexes, and adult apparent survival and recapture probabilities with mark–recapture data on White‐rumped Swallows and found a lower return rate of unsuccessful females. There was little support for influences of sex or year on survival rates. The estimates were equivalent to the lowest value reported for a northern congener, in contrast to the prediction of geographical variation under life‐history theory.  相似文献   

11.
Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006–2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers. Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54–0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54–0.94) and of males was 0.60 (95% CI = 0.42–0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of ≥0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species. © 2011 The Wildlife Society.  相似文献   

12.
North Atlantic climate variation influences survival in adult fulmars   总被引:7,自引:0,他引:7  
There is increasing evidence that large scale climate variation influences reproductive parameters of seabirds, but fewer studies have investigated possible effects on adult survival. Previous work has shown that climate variation reflected by the winter North Atlantic oscillation (WNAO) influences reproductive success in northern fulmars. Here, we use a 34 year long (1962–1995) individual‐based data set to investigate inter‐annual and inter‐individual variation in adult survival in this species. Breeding success in the previous and current seasons, and both the WNAO and one‐year lagged WNAO indexes, were considered as potential sources of inter‐annual variation in survival and recapture probabilities. Sex and an index of body size were considered as potential sources of inter‐individual variation in survival and recapture probabilities. Body size effects were not significant, but males and females differed in both their survival and recapture probabilities. Probability of recapture of females was positively correlated with breeding success in both the current and previous breeding seasons, whereas male recapture probabilities were correlated only with previous breeding success. Male and female survival decreased over the study period, suggesting that there had been a degradation of environmental conditions. This hypothesis was supported by the detection of a negative correlation between survival and the WNAO, which, in turn, showed a positive increase over this period. The negative correlation between female adult survival and WNAO did not result only from the long term behaviour of the two time series, but persisted for higher frequency fluctuations. In contrast, the correlation between male survival and WNAO seemed to result only from the long term behaviour of the two time series. Despite uncertainties over causal mechanisms, these findings add to the body of evidence that large scale climate variation could dramatically affect seabird population dynamics. Furthermore our results suggest that climate variation can differentially influence individuals with distinct phenotypic characteristics.  相似文献   

13.
A hierarchical modelling approach was used to examine adult and age-specific survival in an 8-year study of breeding Semipalmated Sandpipers Calidris pusilla at La Pérouse Bay, Canada. The survival of adult sandpipers was best described by a model with time dependence in local survival rate and probability of recapture. Annual variation in the local survival rate of adults was not correlated with nest success, timing of breeding or "return rates" and was not biased by an effect of first capture. Local survival rate of adult females (0.56, 95% c.l. = 0.51-0.61) was consistently lower than that of adult males (0.61, 95% c.l. = 0.56-0.66); these estimates were comparable with data from other shorebirds. The survival of returning young was best fitted by a model with both age and time dependence in local survival rate and probability of recapture. We evaluated our estimates of local survival rate with reference to patterns of breeding fidelity and philopatry in Semipalmated Sandpipers and other shorebirds.  相似文献   

14.
A study on populations of Glossina morsitans morsitans Westwood on Antelope Island, Lake Kariba, Zimbabwe provided Jolly-Seber (J-S) mark-recapture estimates of adult survival and Moran curve estimates of the overall survival of all developmental stages. For females, Moran survival estimates derived using ox fly-round catches showed similar trends to, but were more variable than, those calculated from J-S population estimates. Regression of one set on the other removed only 26% of the variance. Undue emphasis should not be placed on small changes in Moran survival estimates based on sequences of catches. Catch data cannot provide Moran estimates of male survival probabilities and no comparison is thus possible with estimates from the J-S data. The J-S and the Moran approaches were combined to estimate survival probabilities of the immature stages of male and female tsetse. The overall survival per three-week period averaged 45% for males and 59% for females, comprising mature adult survivals of 27 and 46%, and pooled survivals of immature stages of 59 and 77%, respectively. The high survival of immature flies is due to the sheltered, inactive nature of pupal life. Adult and overall survival probabilities were highly correlated in males (r(2) = 0.61) but less so in females (r(2) = 0.24) where capture rates were lower and variance in the results greater. Immature and overall survival was more highly correlated for both sexes, with r(2) = 0.77 and 0.53 for males and females respectively. When a fixed pupal mortality of 1% per day was assumed, estimates of the survival of young adult males suggested that these were even lower than the survival of mature flies at the harshest times of the year, but were not markedly different when overall survival was high. Assuming equal mortality in all adults enabled the estimation of pupal survival. These had high variances but there was no evidence of any difference between the survival probabilities of male and female pupae.  相似文献   

15.
While the population growth rate in long‐lived species is highly sensitive to adult survival, reproduction can also significantly drive population dynamics. Reproductive parameters can be challenging to estimate as breeders and nonbreeders may vary in resighting probability and reproductive status may be difficult to assess. We extended capture–recapture (CR) models previously fitted for data on other long‐lived marine mammals to estimate demographic parameters while accounting for detection heterogeneity between individuals and state uncertainty regarding reproductive status. We applied this model to data on 106 adult female bottlenose dolphins observed over 13 years. The detection probability differed depending on breeding status. Concerning state uncertainty, offspring were not always sighted with their mother, and older calves were easier to detect than young‐of‐the‐year (YOY), respectively, 0.79 (95% CI 0.59–0.90) and 0.58 (95% CI 0.46–0.68). This possibly led to inaccurate reproductive status assignment of females. Adult female survival probability was high (0.97 CI 95% 0.96–0.98) and did not differ according to breeding status. Young‐of‐the‐year and 1‐year‐old calves had a significantly higher survival rate than 2‐year‐old (respectively, 0.66 CI 95% 0.50–0.78 and 0.45 CI 95% 0.29–0.61). This reduced survival is probably related to weaning, a period during which young are exposed to more risks since they lose protection and feeding from the mother. The probability of having a new YOY was high for breeding females that had raised a calf to the age of 3 or lost a 2‐year‐old calf (0.71, CI 95% 0.45–0.88). Yet, this probability was much lower for nonbreeding females and breeding females that had lost a YOY or a 1‐year‐old calf (0.33, 95% CI 0.26–0.42). The multievent CR framework we used is highly flexible and could be easily modified for other study questions or taxa (marine or terrestrial) aimed at modeling reproductive parameters.  相似文献   

16.
Abstract: The iconic plains bison (Bison bison) have been reintroduced to many places in their former range, but there are few scientific data evaluating the success of these reintroductions or guiding the continued management of these populations. Relying on mark-recapture data, we used a multistate model to estimate bison survival and breeding transition probabilities while controlling for the recapture process. We tested hypotheses in these demographic parameters associated with age, sex, reproductive state, and environmental variables. We also estimated biological process variation in survival and breeding transition probabilities by factoring out sampling variation. The recapture rate of females and calves was high (0.78 ± 0.15 [SE]) and much lower for males (0.41 ± 0.23), especially older males (0.17 ± 0.15). We found that overall bison survival was high (>0.8) and that males (0.80 ± 0.13) survived at lower rates than females (0.94 ± 0.04), but as females aged survival declined (0.89 ± 0.05 for F ≥15 yr old). Lactating and non-lactating females survived at similar rates. We found that females can conceive early (approx. 1.5 yr of age) and had a high probability (approx. 0.8) of breeding in consecutive years, until age 13.5 years, when females that were non-lactating tended to stay in that state. Our results suggest senescence in reproduction and survival for females. We found little support for the effect of climatic covariates on demographic rates, perhaps because the park's current population management goals were predicated from drought-year conditions. This reintroduction has been successful, but continued culling actions will need to be employed and an adaptive management approach is warranted. Our demographic approach can be applied to other heavily managed large-ungulate systems with few or no natural predators.  相似文献   

17.
Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus), mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males) were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941–0.996) than females (0.869, 95% CI: 0.727–0.937). Survival rates of females declined with the progression of the breeding season (from May to August), while males showed constant survival during this period. We also found a clear pattern within the female (but not male) nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898–0.958), when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00–1.000), when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest) may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality.  相似文献   

18.
Changes in demographic features of the lion population in the south-western Kgalagadi Transfrontier Park cause conservation concern. The ratio between adult males and females changed from 1♂:2♀ to 1♂:1♀ over a 32-year period (1977–2010). This is atypical for undisturbed lion populations. We evaluated mechanisms that on their own or together could explain the trend by using both a discrete- and continuous-time capture–recapture model to analyse 2 years of individual-based observation data (May 2013–June 2015). Although most vital rates were within expected parameters, shifts in the sex structure remained similar to that reported for sub-adults previously. The population comprised of 26.9% cubs and juveniles (<2 years), 14.2% sub-adults (2–4 years) and 59% adults (>4 years). Litters had equal sex ratios at first detection. Birth rates were lower (0.44 cubs per female per year) than between 1998 and 2001 (0.69 cubs per female per year). The continuous model indicated a higher survival effect for female cubs, while both models showed higher survival rates/effects for sub-adult and adult females relative to males. However, the sex ratio for sub-adults was male-biased. The shift in demographic signals may associate with changes in age-related immigration rates of sub-adult males.  相似文献   

19.
Marker-loss is a common feature of mark–recapture studies and important as it may bias parameter estimation. A slight alteration in tag-site of double tagged southern elephant seals (Mirounga leonina), marked at Marion Island from 1983 to 2005 in an ongoing mark–recapture program, had important consequences for tag-loss. We calculated age-specific tag-retention rates and cumulative tag-retention probabilities using a maximum likelihood model selection approach in the software application TAG_LOSS 3.2.0. Under the tag-loss independence assumption, double tag-loss of inner interdigital webbing tags (IIT; 17 cohorts) remained below 1% in the first 5 yr and increased monotonically as seals aged, with higher tag-loss in males. Lifetime cumulative IIT tag-loss was 11.9% for females and 18.4% for males, and equivalent for all cohorts. Changing the tag-site to the outer interdigital webbing (OIT; 6 cohorts) resulted in increased and cohort-dependent tag-loss, although the variation (mean ± 95% CI) in cumulative tag-loss probabilities never exceeded 5.3% between cohorts at similar age. Although different studies may homogenize techniques, we advocate the importance of data set-specific assessment of tag-loss rates to ensure greatest confidence in population parameters obtained from mark–recapture experiments. Permanent marking should be implemented where feasible.  相似文献   

20.
To predict the impact of climate change over the whole species distribution range, comparison of adult survival variations over large spatial scale is of primary concern for long-lived species populations that are particularly susceptible to decline if adult survival is reduced. In this study, we estimated and compared adult survival rates between 1989 and 1997 of six populations of Cory's shearwater ( Calonectris diomedea ) spread across 4600 km using capture–recapture models. We showed that mean annual adult survival rates are different among populations along a longitudinal gradient and between sexes. Variation in adult survival is synchronized among populations, with three distinct groups: (1) both females and males of Corsica, Tremiti, and Selvagem (annual survival range 0.88–0.96); (2) both females and males of Frioul and females from Crete (0.82–0.92); and (3) both females and males of Malta and males from Crete (0.74–0.88). The total variation accounted for by the common pattern of variation is on average 71%, suggesting strong environmental forcing. At least 61% of the variation in survival is explained by the Southern Oscillation Index fluctuations. We suggested that Atlantic hurricanes and storms during La Niña years may increase adult mortality for Cory's shearwater during winter months. For long-lived seabird species, variation in adult survival is buffered against environmental variability, although extreme climate conditions such as storms significantly affect adult survival. The effect of climate at large spatial scales on adult survival during the nonbreeding period may lead to synchronization of variation in adult survival over the species' range and has large effects on the meta-population trends. One can thus worry about the future of such long-lived seabirds species under the predictions of higher frequency of extreme large-scale climatic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号