首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and survival responses were determined for black field crickets Teleogryllus commodus (Walker) (Orthoptera: Gryllidae) on artificial diets containing a range of levels of dietary protein, and protease inhibitors (PI's) at 0.33% (weight volume, w:v). The effect on cricket gut enzyme activities of adding PI's to a high protein diet was measured. All PI's which had in vitro binding activity against either trypsin or elastase (the two major cricket gut endopeptidases) reduced growth, but those which bound to both enzymes had the greatest effect. None of the PI's acted as a source of nutritional protein. Cricket growth rate increased with the addition of casein up to 3% w:v, but not with a similar addition of wheatgerm. The impact of PI's on growth was greatest on a 1.5% casein diet. On a high protein (3% casein) diet, the gut activity of trypsin was increased by potato proteinase inhibitors 1 and 2 while the activity of elastase and leucine amino peptidase were increased by soybean trypsin inhibitor and potato proteinase inhibitor 2. Increasing dietary casein up to 3.3% improved cricket survival. The potential of PI's as plant resistance factors against crickets was confirmed.  相似文献   

2.
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one‐dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease‐encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin‐like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin‐like gene McSP34. The expression of the trypsin‐like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources. Published 2010 Wiley Periodicals, Inc.  相似文献   

3.
A dose‐dependent inhibition of endogenous trypsin and aminopeptidase occurs in the lumen of Spodoptera frugiperda after feeding L6 larvae exogenous inhibitors soybean trypsin inhibitor (SBTI), tosyl‐L‐lysine chloromethyl ketone‐HCl (TLCK), or bestatin, respectively, for 3 days. TLCK inhibits trypsin in tissue extracts and in secretions more strongly than SBTI. The aminopeptidase released into the lumen (containing the peritrophic membrane) is strongly inhibited by bestatin, but the membrane‐bound enzyme is not. A bound enzyme may be more resistant to an inhibitor than unbound. A cross‐class elevation of aminopeptidase activity occurs in response to ingested trypsin inhibitor, but there was no cross‐class effect of aminopeptidase inhibitor (bestatin) on trypsin activity. An endogenous trypsin and aminopeptidase inhibitor is present in the lumen and ventricular cells. The strength of the endogenous trypsin inhibition seems to be in the same range as that resulting from ingestion of the exogenous inhibitor SBTI. In some insect species, considerable trypsin secretion occurs in unfed as well as in fed animals, and endogenous protease inhibitors might function to protect the ventricular epithelium by inactivation of trypsin when less food is available. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Helicoverpa armigera is a major pest of many tropical crop plants. Soybean trypsin inhibitor (SBTI) was highly effective against the proteolytic activity of gut extract of the insect. SBTI was also inhibitory to insect growth when present in artificial diet. The gene coding for SBTI was cloned from soybean (Glycine max, CVBirsa) and transferred to tobacco plants for constitutive expression. Young larvae ofH. armigera, fed on the leaves of the transgenic tobacco plants expressing high level of SBTI, however, maintained normal growth and development. The results suggest that in certain cases the trypsin inhibitor gene(s) may not be suitable candidates for developing insect resistant transgenic plants.  相似文献   

5.
The goal of this study was to better understand why dietary soybean products are poorly utilized by salmonids. The influence of dietary intake on coho salmon fingerling weight gain and specific properties of pyloric caeca enzymes was investigated. Fingerlings were fed diets containing heated or unheated soybean meal (SBM) or Promoveal™, as 15–25% herring meal replacer, for 8–12 weeks. Fish fed to apparent satiation with diets containing heated SBM replacer gained more weight than those fed unheated SBM at the same level. Fish increased in body weight at the same rate when fed restricted rations containing either 15% SBM replacer that was variously heated up to 20 min, 15% Promoveal™ replacer or the herring meal basal diet. After the experimental diets were fed, digestive proteinases were isolated from the pyloric caeca. Yield of pyloric caeca enzymes (PCE), recovery of trypsin in PCE, soybean trypsin inhibitor (SBTI) sensitivity of PCE trypsin, specific activity of PCE trypsin and in vitro casein digestibility by PCE were determined for each dietary group. Weight gain vs in vitro casein digestibility by PCE was linear for animals fed unheated SBM to apparent satiation (r2 = 0.71, P < 0.1) but not for animals fed either heated SBM to apparent satiation or variously heated SBM as 15% replacer at restricted levels. Trypsin from fish fed diets with heated or unheated SBM, but not Promoveal™ replacer, was less sensitive to SBTI than fish fed no SBM. For fish fed diets with variously heated SBM as 15% replacer, the SBTI activity of the SBM and SBTI inhibition of PCE trypsin were inversely related (r2 = 0.88, P < 0.05). The yield of PCE was higher for fish fed 25% of heated SBM replacer than it was for diet groups fed less SBM. The yield of PCE trypsin was higher from animals fed 25% heated SBM replacer than those fed diets with a lower percentage of heated SBM replacer. Feeding coho fingerlings rations with SBM replacer appears to promote physiological compensation of PCE. Heat stable and/or heat-activated factor(s) and SBTI appear to cause the compensation of salmon digestive proteinases from coho salmon fed diets with SBM.  相似文献   

6.
1. Combinations of a cysteine proteinase inhibitor (CPI) and serine proteinase inhibitors (SPI) in wheat germ diets were toxic to larvae of the red flour beetle, Tribolium castaneum, when tested at levels where individual inhibitors were nontoxic.2. Mixtures of 0.1% (w/w) CPI (E-64) plus 1% of either of three plant SPIs (soybean Kunitz trypsin inhibitor, soybean Bowman-Birk trypsin-chymotrypsin inhibitor, or lima bean trypsin inhibitor) inhibited T. castaneum growth, resulting in 82–97% reduction in larval weight gain 17 days after hatching and 40–60% mortality.3. Supplemention of diet containing 0.1% E-64 plus 1% soybean Kunitz trypsin inhibitor (STI) with a mixture of amino acids at 7% caused a partial reversal of the growth inhibition, with 91% of the larvae surviving.4. Diet containing 0.1% E-64 plus either 5 or 10% STI resulted in 100% mortality of the larvae during the first or second instar.5. Addition of a mixture ofamino acids at 20% to the 0.1% E-64 plus 10% STI diet allowed 89% of the larvae to develop into adults.6. The synergism between different classes of proteinase inhibitors in the insect's diet that enhances growth inhibition and toxicity demonstrates the potential for an insect pest management strategy involving the coordinated manipulation of two or more types of digestive enzyme inhibitor genes in plants.  相似文献   

7.
在昆虫与植物漫长的相互作用中,植物合成多种抗虫物质并采用防御信号转导系统抵御昆虫,昆虫也具有多种解毒酶系统保护其免受植物毒素的毒害.本文研究了人工添加大豆胰蛋白酶抑制剂和植物防御信号物质对斜纹夜蛾幼虫羧酸酯酶和谷胱甘肽-S-转移酶活性的影响.结果表明: 持续6代自幼虫2龄或3龄开始喂养含有大豆胰蛋白酶抑制剂的人工饲料,其5龄幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性显著升高,2、3龄处理的继代幼虫中肠和脂肪体内羧酸酯酶活性均在第二代达到最大值,分别为对照的2.06、2.40倍和1.96、2.70倍;其谷胱甘肽-S-转移酶活性则分别于第4、2代达到最大值,分别为对照的7.03、11.58倍和5.71、3.60倍,并呈现先升高再降低的趋势.预先接触外源信号物质茉莉酸甲酯、水杨酸甲酯48 h和添加大豆胰蛋白酶抑制剂均可使斜纹夜蛾幼虫中肠、脂肪体内羧酸酯酶和谷胱甘肽-S-转移酶的活性显著升高,且预先接触茉莉酸甲酯和水杨酸甲酯48 h可减缓大豆胰蛋白酶抑制剂对幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性的作用效果.  相似文献   

8.
Insecticidal properties of protease inhibitors have been established in transgenic plants. In the wake of continuous research and rapid development of protease inhibitors it is important to assess possible effects on beneficial insects like the honey bee (Apis mellifera L.). In this study, newly emerged caged bees were fed pollen diets containing three different concentrations (0.1%, 0.5% and 1% w:w) of soybean trypsin inhibitor (SBTI). Hypopharyngeal gland protein content, total midgut proteolytic enzyme activity of these bees, and survival were measured. Bees fed 1% SBTI had significantly reduced hypopharyngeal gland protein content and midgut proteolytic enzyme activity. There were no significant differences between control, 0.1% and 0.5% SBTI treatments. Bees fed a diet containing 1% SBTI had the lowest survival, followed by 0.5% and 0.1%, over a 30-day period. We concluded that nurse bees fed a pollen diet containing at least 1% SBTI would be poor producers of larval food, potentially threatening colony growth and maintenance.  相似文献   

9.
在昆虫与植物漫长的相互作用中,植物合成多种抗虫物质并采用防御信号转导系统抵御昆虫,昆虫也具有多种解毒酶系统保护其免受植物毒素的毒害.本文研究了人工添加大豆胰蛋白酶抑制剂和植物防御信号物质对斜纹夜蛾幼虫羧酸酯酶和谷胱甘肽-S-转移酶活性的影响.结果表明:持续6代自幼虫2龄或3龄开始喂养含有大豆胰蛋白酶抑制剂的人工饲料,其5龄幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性显著升高,2、3龄处理的继代幼虫中肠和脂肪体内羧酸酯酶活性均在第二代达到最大值,分别为对照的2.06、2.40倍和1.96、2.70倍;其谷胱甘肽-S-转移酶活性则分别于第4、2代达到最大值,分别为对照的7.03、11.58倍和5.71、3.60倍,并呈现先升高再降低的趋势.预先接触外源信号物质茉莉酸甲酯、水杨酸甲酯48 h和添加大豆胰蛋白酶抑制剂均可使斜纹夜蛾幼虫中肠、脂肪体内羧酸酯酶和谷胱甘肽-S-转移酶的活性显著升高,且预先接触茉莉酸甲酯和水杨酸甲酯48 h可减缓大豆胰蛋白酶抑制剂对幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性的作用效果.  相似文献   

10.
Repellent, antifeedant and toxic effect of crude hexane extract of Ageratum conyzoides were investigated against Helicoverpa armigera. In orientation bioassay, the extract exhibited dose-dependent repellency against neonates. Extract significantly increased the mortality and decreased growth of different larval stages when administrated orally in artificial diet. EC50 value was at 0.11% for larval growth inhibition. Toxicity of the extract was manifested by high mortality of first instar larvae after 7 days of feeding on diet containing 0.05–0.4% of extract with LC50 of 0.17%. Under choice bioassay, extract showed strong antifeedant activity against fifth instar larvae with DI50 of 0.21%. In nutritional bioassay, extract significantly reduced RCR, RGR, ECI and ECD of fifth instar larvae with increased AD. When RGR were plotted against RCR, the growth efficiency of larvae fed on treated diet was significantly lower than the control fed larvae suggesting the antifeedant and toxic effect of extract.  相似文献   

11.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

12.
Proteolytic enzyme biosynthesis in the midgut of the 4th instar larva of Heliothis virescens is cyclical. Protease activity increases immediately after the molt from the 3rd to the 4th instar larvae and declines just before the molt into the 5th instar. Characterization of the midgut proteases using soybean tryspin inhibitor (SBTI) Bowman Birk Inhibitor (BBI) 4-(2-aminoethyl)benzensulfonylfluoride (AEBSF) and N-tosyl-L-phenylalanine chloromethylketone (TPCK) indicate that protease activity is mostly trypsinlike (80%) with a small amount of chymotrypsinlike activity (20%). Injections of late 3rd and 4th instar larval hemolymph into H. virescens larvae inhibited tryspin biosynthesis in the larval midgut. Similar results were obtained when highly purified 4th instar larval hemolymph that crossreacted with Aea-TMOF antisurm using ELISA was injected into 2nd instar larvae. Injections of Aea-TMOF and its analogues into 2nd instar, and Aea-TMOF alone into 4th instar larvae stopped trypsin biosynthesis 24 and 48 h after the injections, respectively. Injections of 4th instar H. virescens larval hemolymph into female Aedes aegypti that took a blood meal stopped trypsin biosynthesis and egg development. These results show that the biosynthesis of trypsin-like enzymes in the midgut of a lepidoptera is modulated with a hemolymph circulating TMOF-like factor that is closely related to Aea-TMOF. Arch.  相似文献   

13.
The effects of the lipase inhibitor, tetrahydrolipstatin (THL), on neonate Epiphyas postvittana (Walker) (Lepidoptera, Tortricidae) larvae were investigated by feeding on control artificial diets (with and without 2% ethanol) and diets containing 2% ethanol and one of three concentrations of THL (0.011%, 0.037% and 0.11%). Small but significant reductions in growth rate, percent pupation and time to pupation were observed for larvae feeding on 2% ethanol control diet compared with standard control diet, but larger reductions in all parameters occurred with increasing THL concentration. Third instar larvae fed 0.011% THL in the diet had 40% of the midgut lipase activity in the relevant control larvae and showed up-regulation of gene expression of the gastric lipase-like family but not the pancreatic lipase-like family of midgut lipases.  相似文献   

14.
The fourth and fifth instar larvae of the silkworm were reared on artificial diets containing ponasterone A, ecdysterone, and inokosterone. The growth of the larvae and their silk glands, fibroin-synthesizing activity, and silk formation have been investigated. With a diet containing ponasterone A, the fourth instar larvae grew slowly and only a few larvae could ecdyse, while the growth of the fifth instar larvae was disturbed and they died with a darkening of the skin. Ponasterone A also inhibited the growth of the silk glands during the fifth instar. In contrast, the other two phytoecdysones did not greatly influence larval growth. The fourth instar larvae grew rapidly and their ecdysis was advanced with a diet which contained 10 μg of inokosterone/1 g of dry diet. The diet which contained 5 μg of ecdysterone or 10 μg of inokosterone/1 g of dry diet accelerated maturation, while that containing 10 or 20 μg of ecdysterone, or 40 μg of inokosterone, delayed maturation of the fifth instar larvae.Only phytoecdysones caused a decrease in growth of the silk glands in the early half of the instar, and a large amount of phytoecdysones accelerated their growth during the last part of the fifth instar. The fibroin-synthesizing activity was levelled up by feeding ecdysterone and inokosterone, and inokosterone appreciably stimulated activity. Assay of in vitro fibroin synthesis showed that ponasterone A competed with ecdysterone in a stimulative action. Silk formation was much lower in larvae fed the diet containing 5 μg of ecdysterone or 10 μg of inokosterone/1 g of dry diet and was far greater in larvae fed the diet containing 40 μg of inokosterone than in the controls.  相似文献   

15.
Beet armyworm (Spodoptera exigua Hb.) (Lepidoptera: Noctuidae) is the major pest of sugar beet (Beta vulgaris). Pesticide applications are the main method of the insect control. So, alternative method/s is/are needed to control this insect species. So, in the current study, the effect of Galanthus nivalis agglutinin (GNA) (snowdrop lectin) on beet armyworm α-amylase was studied. Measurement of the amylase activity of the larval midgut fed on artificial diet and sugar beet leaves showed that the enzyme activity was higher when the larvae fed on artificial diet. However, in both cases, the fourth instar larvae had the greatest amylase activity. Thus, fourth instar larvae were offered artificial diet containing 1 and 2% GNA. Both treatments of the lectin significantly reduced the α-amylase activity of the insect. For example, amylase activity of the fourth instar larvae in the control (fed only on artificial diet) was 2.62 Uml?1 whilst the activity of the enzyme in the two treatments including diet containing 2 and 1% lectin was 1.45 and 1.75 Uml?1, respectively. The achieved data showed that lectin, in addition to have toxic effect on the larval growth and development, affects the α-amylase activity of the insect gut.  相似文献   

16.
Three distinct digestive protease activities, with strongly alkaline pH optima, were identified in the gut of tomato moth (Lacanobia oleracea) larvae, and characterised using specific synthetic substrates and inhibitors. These were; a trypsin-like activity, a chymotrypsin-like activity specific for substrates and inhibitors containing more than one amino acid residue, and an elastase-like activity, accounting for 40%, 30% and 20% of overall proteolysis respectively. The protease activities differed in their sensitivities to inhibition by different plant protein protease inhibitors (PIs), as estimated by I(50) values. Soya bean Kunitz trypsin inhibitor (SKTI) was the only plant PI tested to inhibit all three digestive protease activities at concentrations <40 &mgr;g/ml (approx. 5x10(-6)M). Incorporation of SKTI into a potato leaf-based artificial diet at 2% of total protein, decreased larval survival and growth (by approx. 33% and 40% respectively after 21 days) and retarded development (by approx. 2 days). However, when SKTI was expressed in transgenic potato plants at approx. 0.5% of total protein, only marginal effects on L. oleracea larvae were observed, which decreased with time. Whilst the presence of SKTI in artificial diet increased endogenous larval trypsin-like activity by up to four-fold, no effects on this activity were observed in larvae feeding on transgenic plants.  相似文献   

17.
ABSTRACT.
  • 1 All instars of Spodoptera eridania larvae grow as well or better when cyanide is present in their diet as when it is absent. Concentrations up to 0.05% stimulate feeding in first to fourth instar larvae. Concentrations from 0.1% to 1.0% stimulate feeding in fifth and sixth instar larvae.
  • 2 Three-day-old sixth instar larvae pre-exposed to cyanide are completely resistant to its acutely toxic effects, but previously unexposed larvae suffer reversible symptoms of poisoning when feeding on a diet containing 1.0% KCN.
  • 3 A 1.0% dietary KCN exposure during the sixth instar reduces ecdysis to 17% adult emergence and completely inhibits oviposition.
  • 4 Cyanide concentrations from 0.5% to 1.0% in the diet, although effecting increased growth rates, induce necrotic lesions in larval mid-gut epithelial cells.
  • 5 Thiocyanate, one of the in vivo cyanide metabolites, at 0.5% in the diet reduces pupation to 23%, delays and reduces adult emergence to 20% and inhibits oviposition.
  • 6 The preferred host plant of S.eridania is the lima bean, Phaseolus lunatus, probably due to its content of the cyanogenic glycoside linamarin. Dietary valine has no effect on the southern armyworm feeding and growth behaviour (Long & Brattsten, 1982) but dietary cyanide does. The lima bean is known to contain up to 31 ppm cyanide in some varieties.
  相似文献   

18.
The hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) was assessed for its effect on growth and digestive physiology of larvae of the stalk corn borer Sesamia nonagrioides Lef. Nutritional indices and activities of some digestive and detoxification enzymes were determined for larvae feeding on a DIMBOA-containing diet for the first two days of the third instar (short-term feeding assays), and from neonates to third instar (long-term feeding assays). DIMBOA reduced the relative growth rate and the efficiency of conversion of ingested food without affecting the relative consumption rate in long-term feeding assays, but it had no effect in short-term assays. Moreover, elastase-like activity was significantly increased by DIMBOA in short-term feeding assays, whereas microsomal oxidase activity was increased and esterase activity was reduced in long-term feeding assays. In vitro, DIMBOA inhibited the activities of carboxypeptidases, aminopeptidase, glutathione S-transferase and esterase, but it had no effect on trypsin, chymotrypsin and elastase. The implications of the altered levels of proteases and detoxification enzyme activities on the digestive physiology of larvae feeding on DIMBOA-containing diets are discussed.  相似文献   

19.
Abstract. The quantity of specific antibody ingested by larvae of Lucilia cuprina and its fate after ingestion were studied in larvae grown on sheep and on an artificial diet. Larvae grown to late first or early second instar on sheep vaccinated with horse myoglobin contained 66% less specific antibody detected by enzyme linked immunosorbent assay than larvae grown to a similar stage on an artificial diet containing 75% serum from the same sheep. A similar result was obtained when larvae were grown to mid-third instar. Larvae grown on sheep to first or second instar contained approximately the same quantity of specific antibody per unit weight of larvae as those grown to third instar. Larvae grown on diet to third instar contained 22% less specific antibody per unit weight than those grown to first or second instar. In larvae grown on diet to late third instar, ingested diet retained 91 ± 12% of its original specific antibody activity in the crop, 50 ± 11% in the anterior midgut, 8 ± 2% in the posterior midgut and 13 ± 6% in the hindgut. The mean concentration of total immunoglobulin detectable in the haemolymph of individual third instar larvae grown on diet was 1.7 ± 2.8 ug/ml. Assays of specific antibody in the haemolymph of similarly reared larvae indicated that all or most of this immunoglobulin remained functional. The implications of the quantities and distribution of ingested functional antibody found in feeding larvae of L.cuprina are discussed in relation to the possibility of vaccinating sheep against these larvae and the selection of likely internal targets as sources of potential protective antigens.  相似文献   

20.
In the present study, trypsin inhibitor extracts of ten kidney bean seed (Phaseolus vulgaris) varieties exhibiting trypsin and gut trypsin-like protease inhibitor activity were tested on Helicoverpa armigera and Spodoptera litura. Trypsin inhibitor protein was isolated and purified using multi-step strategy with a recovery of ~15 % and purification fold by ~39.4. SDS-PAGE revealed a single band corresponding to molecular mass of ~15 kDa and inhibitory activity was confirmed by reverse zymogram analyses. The inhibitor retained its inhibitory activity over a broad range of pH (3–11), temperature (40–60 °C) and thermostability was promoted by casein, CaCl2, BSA and sucrose. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.85 μM. The purified trypsin inhibitor protein was further incorporated in the artificial diet and fed to second instar larvae. A maximum of 91.7 % inhibition was obtained in H. armigera, while it was moderate in S. litura (29 %) with slight varietal differences. The insect bioassay showed 40 and 22 % decrease in larval growth followed by 3 and 2 days delay in pupation of H. armigera and S. litura, respectively. Some of the adults emerged were deformed and not fully formed. Trypsin inhibitor protein was more effective against H. armigera as it showed 46.7 % mortality during larval growth period compared to S. litura (13.3 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号