共查询到20条相似文献,搜索用时 0 毫秒
1.
R.A. Cooper 《New Zealand journal of zoology.》2013,40(4):699-712
Abstract Tectonostratigraphic terranes of New Zealand, grouped for purposes of the present discussion into six groups, are briefly reviewed as to their role in the biogeographic evolution of the present day biota of New Zealand. Of all the terranes so far recognised, only the Torlesse (Rakaia) terrane is thought to have originated outside the New Zealand region; of the various models proposed to explain its origin and emplacement, only that by McKinnon (1983) would allow it to have acted as a “raft” that could have transported a biota en masse. The former existence of a “lost continent” (Pacifica), suggested as apossible source for Torlesse sediments, is regarded as improbable. The long time (at least 140 Ma, and probably 190 Ma) since terrane accretion, and the extreme degree of geological (and geographical) complexity and change that New Zealand has undergone since accretion, make it most improbable that the present day distribution of plants and animals among the terranes reflects the original distribution of their ancestors. 相似文献
2.
SEBERG, O., 1988. Taxonomy, phylogeny, and biogeogràphy of the genus Oreobolus R.Br. (Cyperaceae), with comments on the biogeogràphy of the South Pacific continents. The genus Oreobolus R.Br. (Cyperaceae) is revised. Fourteen species and three subspecies are recognized; two subspecies are described as new, O. obtusangulus subsp. unispicus and O. oxycarpus subsp. brownii; and a new subspecies combination is made, O. pumilio subsp. clemensiae. Comments are given on the classiciation and choice of phylogenetic and biogeographic methods. The sister-group of the genera Oreobolus and Schoenoides (which has recently been segregated from Oreobolus) is a subset of Costularia subgenus Costularia. Oreobolus is hypothesized to be monophyletic, and a phylogenetic hypothesis, based on a parsimony method, is presented. The scale-like tepals of Oreobolus are hypothesized to be apomorphic. Current vicariance biogeographic hypotheses on the relationships of the South Pacific continents are shown to be premature. Brief accounts are given on nomenclature, aspects of morphology, chromosome numbers, geographical distribution, and ecology. 相似文献
3.
The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence 总被引:14,自引:0,他引:14
Gymnosperms, and conifers in particular, are sometimes very productive trees yet angiosperms dominate most temperate and tropical vegetation. Current explanations for angiosperm success emphasize the advantages of insect pollination and seed dispersal by animals for the colonization of isolated habitats. Differences between gymnosperm and angiosperm reproductive and vegetative growth rates have been largely ignored. Gymnosperms are all woody, perennial and usually have long reproductive cycles. Their leaves are not as fully vascularized as those of angiosperms and are more stereotyped in shape and size. Gymnosperm tracheids are generally more resistant to solute flow than angiosperm vessels. A consequence of the less efficient transport system is that maximum growth rates of gymnosperms are lower than maximum growth rates of angiosperms in well lit, well watered habitats. Gymnosperm seedlings may be particularly uncompetitive since their growth depends on a single cohort of relatively inefficient leaves. Later, some gymnosperms attain a higher productivity than co-occurring angiosperm trees by accumulating several cohorts of leaves with a higher total leaf area. These functional constraints on gymnosperm growth rates suggest that gymnosperms will be restricted to areas where growth of angiosperm competitors is reduced, for example, by cold or nutrient shortages. Biogeographic evidence supports this prediction since conifers are largely confined to high latitudes and elevations or nutrient-poor soils. Experimental studies show that competition in the regeneration niche (between conifer seedlings and angiosperm herbs and shrubs) is common and significantly affects conifer growth and survival, Fast-growing angiosperms, especially herbs and shrubs, may also change the frequency of disturbance regimes thereby excluding slower-growing gymnosperms. Shade-tolerant and early successional conifers share similar characteristics of slow initial growth and low plasticity to a change in resources. Shade-tolerant gymnosperms would be expected to occur only where forest openings are small or otherwise unsuitable for rapid filling by fast-growing angiosperm trees, lianas or shrubs. The limited evidence available suggests that shade-tolerant conifers are confined to forests with small gap sizes where large disturbances are very rare. The regeneration hypothesis for gymnosperm exclusion by angiosperms is consistent with several aspects of the fossil record such as the early disappearance of gymnosperms from early successional environments where competition with angiosperms would have been most severe. However there are unresolved difficulties in interpreting process from paleoecological pattern which prevent the testing of alternative hypotheses. 相似文献
4.
J. C. Briggs 《Russian Journal of Marine Biology》2007,33(5):273-277
From the viewpoint of 2007, one can trace the history of an interesting and contentious trend in biogeography and evolution that began with Croizat’s concept of panbiogeography in 1958. After a quiescent period of about 16 years, some young biologists in New York and in New Zealand read Croizat’s books and became enthusiastic supporters of his ideas. In New York, in the early 1970s, panbiogeography was combined with a part of Hennig’s phylogenetic method to create vicariance biogeography. In 1986, the name of the latter was changed to cladistic biogeography. In the meantime, Croizat’s followers in New Zealand sought to maintain panbiogeography in its original form without reference to phylogeny. This idea reached its peak of popularity in 1989–1990 and then began to fade. In comparison, cladistic biogeography became much more widespread, especially when its followers began publishing laudatory books and papers. Its decline became noticeable after the turn of the century as the dispersal counterrevolution began to have its effect. It served a useful purpose by engaging the interest of young biologists who otherwise may not have become aware of biogeography. 相似文献
5.
Goremykin VV Hirsch-Ernst KI Wölfl S Hellwig FH 《Molecular biology and evolution》2004,21(7):1445-1454
Angiosperms (flowering plants) dominate contemporary terrestrial flora with roughly 250,000 species, but their origin and early evolution are still poorly understood. In recent years, molecular evidence has accumulated suggesting a dicotyledonous origin of monocots. Phylogenetic reconstructions have suggested that several dicotyledonous groups that include taxa such as Amborella, Austrobaileya, and Nymphaea branch off as the most basal among angiosperms. This has led to the concept of monocots, "eudicots," "basal dicots," and "ANITA" groupings. Here, we present the sequence and phylogenetic analyses of the chloroplast DNA of Nymphaea alba. Phylogenetic analyses of our 14-species data set, consisting of 29,991 aligned nucleotide positions per chloroplast genome, revealed consistent support for Nymphaea being a divergent member of a monophyletic dicot assemblage. Three distinct angiosperm lineages were supported in the majority of our phylogenetic analyses-eudicots, Magnoliopsida, and monocots. However, the monocot lineage leading to the grasses was the deepest branching. Although analyses of only one individual gene alignment (out of 61) is consistent with some recently proposed hypotheses for the paraphyly of dicots, we also report observations that nine genes do not support paraphyly of dicots. Instead, they support the basal monocot-dicot split. Consistent with this finding, we also report observations suggesting that the monocot lineage leading to the grasses has the strongest phylogenetic affinity to gymnosperms. Our findings have general implications for studies of substitution model specification and analyses of concatenated genome data. 相似文献
6.
R. J. BUTLER P. M. BARRETT P. KENRICK M. G. PENN 《Journal of evolutionary biology》2009,22(3):446-459
Abstract Palaeobiologists frequently attempt to identify examples of co‐evolutionary interactions over extended geological timescales. These hypotheses are often intuitively appealing, as co‐evolution is so prevalent in extant ecosystems, and are easy to formulate; however, they are much more difficult to test than their modern analogues. Among the more intriguing deep time co‐evolutionary scenarios are those that relate changes in Cretaceous dinosaur faunas to the primary radiation of flowering plants. Demonstration of temporal congruence between the diversifications of co‐evolving groups is necessary to establish whether co‐evolution could have occurred in such cases, but is insufficient to prove whether it actually did take place. Diversity patterns do, however, provide a means for falsifying such hypotheses. We have compiled a new database of Cretaceous dinosaur and plant distributions from information in the primary literature. This is used as the basis for plotting taxonomic diversity and occurrence curves for herbivorous dinosaurs (Sauropodomorpha, Stegosauria, Ankylosauria, Ornithopoda, Ceratopsia, Pachycephalosauria and herbivorous theropods) and major groups of plants (angiosperms, Bennettitales, cycads, cycadophytes, conifers, Filicales and Ginkgoales) that co‐occur in dinosaur‐bearing formations. Pairwise statistical comparisons were made between various floral and faunal groups to test for any significant similarities in the shapes of their diversity curves through time. We show that, with one possible exception, diversity patterns for major groups of herbivorous dinosaurs are not positively correlated with angiosperm diversity. In other words, at the level of major clades, there is no support for any diffuse co‐evolutionary relationship between herbivorous dinosaurs and flowering plants. The diversification of Late Cretaceous pachycephalosaurs (excluding the problematic taxon Stenopelix) shows a positive correlation, but this might be spuriously related to poor sampling in the Turonian–Santonian interval. Stegosauria shows a significant negative correlation with flowering plants and a significant positive correlation with the nonflowering cycadophytes (cycads, Bennettitales). This interesting pattern is worthy of further investigation, and it reflects the decline of both stegosaurs and cycadophytes during the Early Cretaceous. 相似文献
7.
8.
Apomixis in angiosperms is asexual reproduction from seed. Its importance to angiospermous evolution and biodiversity has been difficult to assess mainly because of insufficient taxonomic documentation. Thus, we assembled literature reporting apomixis occurrences among angiosperms and transferred the information to an internet database (http://www.apomixis.uni-goettingen.de). We then searched for correlations between apomixis occurrences and well-established measures of taxonomic diversity and biogeography. Apomixis was found to be taxonomically widespread with no clear tendency to specific groups and to occur with sexuality at all taxonomic levels. Adventitious embryony was the most frequent form (148 genera) followed by apospory (110) and diplospory (68). All three forms are phylogenetically scattered, but this scattering is strongly associated with measures of biodiversity. Across apomictic-containing orders and families, numbers of apomict-containing genera were positively correlated with total numbers of genera. In general, apomict-containing orders, families, and subfamilies of Asteraceae, Poaceae, and Orchidaceae were larger, i.e., they possessed more families or genera, than non-apomict-containing orders, families or subfamilies. Furthermore, many apomict-containing genera were found to be highly cosmopolitan. In this respect, 62% occupy multiple geographic zones. Numbers of genera containing sporophytic or gametophytic apomicts decreased from the tropics to the arctic, a trend that parallels general biodiversity. While angiosperms appear to be predisposed to shift from sex to apomixis, there is also evidence of reversions to sexuality. Such reversions may result from genetic or epigenetic destabilization events accompanying hybridization, polyploidy, or other cytogenetic alterations. Because of increased within-plant genetic and genomic heterogeneity, range expansions and diversifications at the species and genus levels may occur more rapidly upon reversion to sexuality. The significantly-enriched representations of apomicts among highly diverse and geographically-extensive taxa, from genera to orders, support this conclusion. 相似文献
9.
Pinto G Mahler DL Harmon LJ Losos JB 《Proceedings. Biological sciences / The Royal Society》2008,275(1652):2749-2757
Many of the classic examples of adaptive radiation, including Caribbean Anolis lizards, are found on islands. However, Anolis also exhibits substantial species richness and ecomorphological disparity on mainland Central and South America. We compared patterns and rates of morphological evolution to investigate whether, in fact, island Anolis are exceptionally diverse relative to their mainland counterparts. Quite the contrary, we found that rates and extent of diversification were comparable--Anolis adaptive radiation is not an island phenomenon. However, mainland and Caribbean anoles occupy different parts of morphological space; in independent colonizations of both island and mainland habitats, island anoles have evolved shorter limbs and better-developed toe pads. These patterns suggest that the two areas are on different evolutionary trajectories. The ecological causes of these differences are unknown, but may relate to differences in predation or competition among mainland and island communities. 相似文献
10.
R. MELVILLE F.L.S. 《Botanical journal of the Linnean Society. Linnean Society of London》1983,86(3):279-323
The reproductive units of the Glossopteridae are unisexual gonophylls, some with the potential for direct conversion into angiosperm flowers. Compound fructifications in both major taxa may be anthostrobili or the newly defined anthofasciculi. The enclosure of ovules in the angiosperm manner, but with extrorse orientation, places the beginning of angiospermy in the Permian. A few angiosperm gynoecia are extrorse. The presence of the leaf + branch berberoid unit is traced throughout the plant and accounts for the presence of protostelic bundles in the ventral traces and other parts of the flower. This evidence invalidates the carpel theory, but supports the gonophyll theory. The extensive evidence for relationship from reproductive organs is supported by leaf and petal venation patterns forming a continuous series linking the two taxa. 相似文献
11.
12.
G. LEDYARD STEBBINS 《Botanical journal of the Linnean Society. Linnean Society of London》1984,88(1-2):149-164
STEBBINS, G. L., 1984. Mosaic evolution, mosaic selection and angiosperm phylogeny. Mosaic evolution is a general pattern of evolutionary change, and is expected on the hypothesis that rvolution is basically opportunistic rather than determinate. It is most often exemplified by constancy with respect to one set of characters over a given period of time, accompanied by more or less rapid change with respect to other characteristics of the same organisms. To the extent that the characters involved are functional and adaptive, mosaic evolution must be guided by mosaic selection. A survey of character differences between species belonging to 59 of the largest genera found in the California flora indicates that mosaic selection has played an important role in the evolution of modern species of angiosperms. Mosaic evolution has also taken place with respect to dinerent chromosomal and biochemical characteristics, as is evident from comparisons between morphological, chromosomal and biochemical differences. When the widespread Occurrence of mosaic evolution and of mosaic selection are recognized, two general principles emerge: the primitive or advanced nature of individual character states cannot be deduced solely on the basis of their correlation or association with other character states which are believed to be primitive or advanced; mosaic selection provides a strong basis for the conclusion that natural selection is the most basic process that converts changing population-environment interactions into evolutionary change. 相似文献
13.
14.
Patrick J. Keeling 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1541):729-748
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking. 相似文献
15.
The formation and maintenance of the Nothofagus beech gap in the South Island, New Zealand, has been the focus of biogeographical debate since the 1920s. We examine the historical process of gap formation by investigating the population genetics of fungus beetles: Brachynopus scutellaris (Staphylinidae) inhabits logs and is absent from the beech gap, and Hisparonia hystrix (Nitidulidae) is contiguous through the gap and is found commonly on sooty mould growing on several plant species. Both species show distinctive northern and southern haplotype distributions while H. hystrix recolonized the gap as shown by definitive mixing. B. scutellaris shows two major haplotype clades with strong geographical concordance, and unlike H. hystrix, has clearly defined lineages that can be partitioned for molecular dating. Based on coalescence dating methods, disjunct lineages of B. scutellaris indicate that the gap was formed less than 200 000 years ago. Phylogenetic imprints from both species reveal similar patterns of population divergence corresponding to recent glacial cycles, favouring a glacial explanation for the origin of the gap. Post-gap colonization by H. hystrix may have been facilitated by the spread of Leptospermum scoparium host trees to the area, and they may be better at dispersing than B. scutellaris which may be constrained by fungal host and/or microhabitat. The gap-excluded species B. scutellaris is found in both beech and podocarp-broadleaf forests flanking the Westland gap and its absence in the gap may be related to incomplete recolonization following glacial retreat. We also discuss species status and an ancient polymorphism within B. scutellaris . 相似文献
16.
John J. Wiens 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1576):2336-2350
In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields. 相似文献
17.
The patterns of shape variation of the first upper molar and mandible have been investigated within and among wood mice (Apodemus sylvaticus) populations from northern Germany. Some factors such as sex and age of the animals could be a source of within-group morphological variability interfering with among-groups patterns of differentiation. The relative importance of both sources of shape variation was investigated, in order to evaluate the robustness of patterns of fine-scale geographic differentiation. The increasing age of the animals, estimated by wear stages of the upper tooth row, caused significant variations in size and shape of the molars due to progressive abrasion of the cusps. It also involved shape changes of the mandible due to bone remodelling. However, these intrapopulational effects are of limited importance compared to geographic differentiation.Gene flow among populations should be favoured across mainland populations but lowered between mainland and islands, and to a lesser extent among close islands. Shape differences in molars are in agreement with this expected pattern of gene flow. Patterns of mandible differentiation rather match local variations in habitats. At this fine geographic scale, molar shape would vary according to the amount of genetic exchange among populations whereas mandible shape might be under local selective and/or functional constraints.
Zusammenfassung
Die Form von erstem oberen Molar und Unterkiefer der Waldmaus (Apodemus sylvaticus) in Norddeutschland: Alter, Habitat und InseleffektDie Formvariabilität des Molars (M1/) und des Unterkiefers von norddeutschen Waldmäusen (Apodemus sylvaticus) wurde untersucht. Dabei wurde sowohl die Variabilität zwischen verschiedenen Populationen als auch die Variabilität innerhalb einer Population studiert. So können Geschlecht und Alter beispielsweise die Formvariabilität innerhalb einer Population verursachen. Deshalb wurde die Bedeutung dieser Faktoren mit der Variabilität zwischen geographisch unterschiedlichen Populationen verglichen. Geschlechtsdimorphismus wurde nicht beobachtet. Ein zunehmendes Alter verursacht eine Variation der Größe und der Form des Molars infolge fortschreitender Abnutzung. Der Unterkiefer ändert sich auch durch spätes Wachstum und Umgestaltung des Knochens. Jedoch sind diese Effekte von beschränkter Bedeutung verglichen mit der Variabilität von Ort zu Ort.Der Genfluß zwischen Festland-Populationen sollte begünstigt sein verglichen mit dem Genfluß zwischen nordfriesischen Inseln und zwischen Inseln und Festland. Sylt nimmt dabei eine Zwischenstellung ein, weil diese Insel durch einen Damm mit dem Festland verbunden ist. Die Differenzierung des Molars stimmt mit diesem erwarteten Muster überein. Die Differenzierung der Form des Unterkiefers entspricht eher den unterschiedlichen Habitaten zwischen Holstein, Nordfriesland, und den nordfriesischen Inseln. Trotz des kleinen geographischen Rahmens dieser Untersuchung lassen sich folgende Ergebnisse ableiten: Die Molaren scheinen sich mit dem Genfluß zwischen verschiedenen Populationen zu ändern während sich der Unterkiefer durch selektive und/oder funktionelle Besonderheiten zu ändern scheint. 相似文献18.
Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake ( Lampropeltis getula ), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b . We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats. 相似文献
19.
The species- and genus-specific DNA content, average base composition of nuclear DNA, presence or absence of satellite DNA, the percentage of heterochromatin and other characteristics of nuclear DNA and nuclear structure allow to deduce the molecular changes which accompanied, or more probably caused, cladogenesis in the orchids studied. It is suggested that saltatory replication (generative amplification) of certain DNA sequenes, diversification of reiterated DNA sequences, and loss of DNA play an important role in the evolution of orchids.—The relationship between changes of genome composition and of nuclear structure and ultrastructure is discussed on the basis of cot curves, heterochromatin staining with Giemsa (C banding), electron microscopy of nuclei, and molecular hybridization in situ.Some aspects of this paper have been presented at the Helsinki Chromosome Conference, August 1977 (Nagl & Capesius 1977). 相似文献
20.
Molecular phylogeny of caprines (Bovidae, Antilopinae): the question of their origin and diversification during the Miocene 总被引:3,自引:0,他引:3
A. Ropiquet A. Hassanin 《Journal of Zoological Systematics and Evolutionary Research》2005,43(1):49-60
Caprines include all bovids related to sheep and goat. The composition of the group is controversial and inter-generic relationships have been widely debated. Here, we analysed 2469 characters draw from three distinct molecular markers, i.e. two mitochondrial genes (cytochrome b and 12S rRNA) and one nuclear fragment (exon 4 of the κ -casein gene). The taxonomic sampling includes all genera putatively described as caprines, as well as several other bovid genera in order to elucidate the position of caprines within the family Bovidae, and to determine the exact composition of the group. Phylogenetic analyses confirm firstly that Pseudoryx and Saiga do not belong to caprines, and secondly, that all tribes classically defined in the literature are not monophyletic, supporting the inclusion of all caprine species into a unique enlarged tribe Caprini sensu lato . Our results are in contradiction with previous investigations suggesting a sister-group relationship between Ovis (sheep and mouflons) and Budorcas (takins). By using a molecular calibration point at 18.5 Mya for the first appearance of bovids, we estimated divergence times with our molecular data. We also performed biogeographic inferences to better understand the origin and diversification of caprines during the Neogene. Our analyses suggest that caprines shared a common ancestor with Alcelaphini and Hippotragini in the middle-late Miocene (13.37 ± 0.70 Mya). Our results also indicate that the extant generic diversity of caprines resulted from a rapid adaptive radiation during the late Miocene, at 10.96 ± 0.73 Mya. We propose that this adaptive radiation resulted from the acquisition of reduced metacarpals, a key innovation which occurred during the late Miocene as a consequence of insularity isolation in the mountainous mega-archipelago between Mediterranean and Paratethys Seas. 相似文献