首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conceptual gap between ecological and historical biogeography is wide, although both disciplines are concerned with explaining how distributions have been shaped. A central aim of modern historical biogeography is to use a phylogenetic framework to reconstruct the geographic history of a group in terms of dispersals and vicariant events, and a number of analytical methods have been developed to do so. To date the most popular analytical methods in historical biogeography have been parsimony-based. Such methods can be classified into two groups based on the assumptions used. The first group assumes that vicariance between two areas creates common patterns of disjunct distributions across several taxa whereas dispersals and extinctions generate clade specific patterns. The second group of methods assumes that passive vicariance and within-area speciation have a higher probability of occurrence than active dispersal events and extinction. Typically, none of these methods takes into account the ecology of the taxa in question. I discuss why these methods can be potentially misleading if the ecology of the taxon is ignored. In particular, the vagility or dispersal ability of taxa plays a pivotal role in shaping the distributions and modes of speciation. I argue that the vagility of taxa should be explicitly incorporated in biogeographic analyses. Likelihood-based methods with models in which more realistic probabilities of dispersal and modes of speciation can be specified are arguably the way ahead. Although objective quantification will pose a challenge, the complete ignorance of this vital aspect, as has been done in many historical biogeographic analyses, can be dangerous. I use worked examples to show a simple way of utilizing such information, but better methods need to be developed to more effectively use ecological knowledge in historical biogeography.  相似文献   

2.
Ernst Mayr's scientific career continues strongly 70 years after he published his first scientific paper in 1923. He is primarily a naturalist and ornithologist which has influenced his basic approach in science and later in philosophy and history of science. Mayr studied at the Natural History Museum in Berlin with Professor E. Stresemann, a leader in the most progressive school of avian systematics of the time. The contracts gained through Stresemann were central to Mayr's participation in a three year expedition to New Guinea and The Solomons, and the offer of a position in the Department of Ornithology, American Museum of Natural History, beginning in 1931. At the AMNH, Mayr was able to blend the best of the academic traditions of Europe with those of North America in developing a unified research program in biodiversity embracing systematics, biogeography and nomenclature. His tasks at the AMNH were to curate and study the huge collections amassed by the Whitney South Sea Expedition plus the just purchased Rothschild collection of birds. These studies provided Mayr with the empirical foundation essential for his 1942Systematics and the Origin of Species and his subsequent theoretical work in evolutionary biology as well as all his later work in the philosophy and history of science. Without a detailed understanding of Mayr's empirical systematic and biogeographic work, one cannot possibly comprehend fully his immense contributions to evolutionary biology and his later analyses in the philosophy and history of science.  相似文献   

3.
Although ecology and biogeography had common origins in the natural history of the nineteenth century, they diverged substantially during the early twentieth century as ecology became increasingly hypothesis-driven and experimental. This mechanistic focus narrowed ecology''s purview to local scales of time and space, and mostly excluded large-scale phenomena and historical explanations. In parallel, biogeography became more analytical with the acceptance of plate tectonics and the development of phylogenetic systematics, and began to pay more attention to ecological factors that influence large-scale distributions. This trend towards unification exposed problems with terms such as ‘community’ and ‘niche,’ in part because ecologists began to view ecological communities as open systems within the contexts of history and geography. The papers in this issue represent biogeographic and ecological perspectives and address the general themes of (i) the niche, (ii) comparative ecology and macroecology, (iii) community assembly, and (iv) diversity. The integration of ecology and biogeography clearly is a natural undertaking that is based on evolutionary biology, has developed its own momentum, and which promises novel, synthetic approaches to investigating ecological systems and their variation over the surface of the Earth. We offer suggestions on future research directions at the intersection of biogeography and ecology.  相似文献   

4.
The voice of historical biogeography   总被引:2,自引:0,他引:2  
Historical biogeography is going through an extraordinary revolution concerning its foundations, basic concepts, methods, and relationships to other disciplines of comparative biology. There are external and internal forces that are shaping the present of historical biogeography. The external forces are: global tectonics as the dominant paradigm in geosciences, cladistics as the basic language of comparative biology and the biologist's perception of biogeography. The internal forces are: the proliferation of competing articulations, recourse to philosophy and the debate over fundamentals. The importance of the geographical dimension of life's diversity to any understanding of the history of life on earth is emphasized. Three different kinds of processes that modify the geographical spatial arrangement of the organisms are identified: extinction, dispersal and vicariance. Reconstructing past biogeographic events can be done from three different perspectives: (1) the distribution of individual groups (taxon biogeography) (2) areas of endemism (area biogeography), and (3) biotas (spatial homology). There are at least nine basic historical biogeographic approaches: centre of origin and dispersal, panbiogeography, phylogenetic biogeography, cladistic biogeography, phylogeography, parsimony analysis of endemicity, event-based methods, ancestral areas, and experimental biogeography. These nine approaches contain at least 30 techniques (23 of them have been proposed in the last 14 years). The whole practice and philosophy of biogeography depend upon the development of a coherent and comprehensive conceptual framework for handling the distribution of organisms and events in space.  相似文献   

5.
The existence of diadromous migrations has significant implications for understanding a broad series of biogeographical and ecological questions and for doing so across a broad range of spatial and temporal scales. Understanding these implications is important for interpretation of patterns in historical and ecological biogeography as well as in community ecology and conservation. This article explores these implications. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

6.
Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes. The time is ripe to assess critically the extent to which the integration of phylogeny into these different fields of ecology has delivered on its promise. Here we review how phylogenetic information has been used to identify better the key components of species interactions with their biotic and abiotic environments, to determine the relationships between diversity and ecosystem functioning and ultimately to establish good management practices to protect overall biodiversity in the face of global change. We evaluate the relevance of information provided by phylogenies to ecologists, highlighting current potential weaknesses and needs for future developments. We suggest that despite the strong progress that has been made, a consistent unified framework is still missing to link local ecological dynamics to macroevolution. This is a necessary step in order to interpret observed phylogenetic patterns in a wider ecological context. Beyond the fundamental question of how evolutionary history contributes to shape communities, ecophylogenetics will help ecology to become a better integrative and predictive science.  相似文献   

7.
Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal–extinction–sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography.  相似文献   

8.
In our 2011 synthesis (Bowman et al., Journal of Biogeography, 2011, 38 , 2223–2236), we argued for a holistic approach to human issues in fire science that we term ‘pyrogeography’. Coughlan & Petty (Journal of Biogeography, 2013, 40 , 1010–1012) critiqued our paper on the grounds that our ‘pyric phase’ model was built on outdated views of cultural development, claiming we developed it to be the unifying explanatory framework for all human–fire sciences. Rather, they suggest that ‘historical ecology’ could provide such a framework. We used the ‘pyric transition’ for multiple purposes but did not offer it as an exclusive explanatory framework for pyrogeography. Although ‘historical ecology’ is one of many useful approaches to studying human–fire relationships, scholars should also look to political and evolutionary ecology, ecosystems and complexity theories, as well as empirical generalizations to build an interdisciplinary fire science that incorporates human, ecological and biophysical dimensions of fire regimes.  相似文献   

9.
Biogeography is the discipline of biology that studies the present and past distribution patterns of biological diversity and their underlying environmental and historical causes. For most of its history, biogeography has been divided into proponents of vicariance explanations, who defend that distribution patterns can mainly be explained by geological, tectonic-isolating events; and dispersalists, who argue that current distribution patterns are largely the result of recent migration events. This paper provides an overview of the evolution of the discipline from methods focused on finding general patterns of distribution (cladistic biogeography), to those that integrate biogeographic processes (event-based biogeography), to modern probabilistic approaches (parametric biogeography). The latter allows incorporating into biogeographic inference estimates of the divergence time between lineages (usually based on DNA sequences) and external sources of evidence, such as information on past climate and geography, the organism fossil record, or its ecological tolerance. This has revolutionized the discipline, allowing it to escape the dispersal versus vicariance dilemma and to address a wider range of evolutionary questions, including the role of ecological and historical factors in the construction of biomes or the existence of contrasting patterns of range evolution in animals and plants.  相似文献   

10.
Elevation gradients of species-density: historical and prospective views   总被引:14,自引:0,他引:14  
Studies of elevation clines in diversity and composition of ecological communities date back to the origins of biogeography. A modern resurgence of interests in these elevational clines is likely to contribute important insights for developing a more general theory of species diversity. In order to gain a more comprehensive understanding of geographical clines in diversity, the research programme for montane biogeography should include statistically rigorous tests of apparent patterns, comparisons of patterns among regions and taxonomic or ecological groups of species, and analyses of clines in environmental variables concurrent with biogeographical surveys. The conceptual framework for this research programme should be based on the assumption that elevational gradients in species diversity result from a combination of ecological and evolutionary processes, rather than the presumed independent effects of one overriding force. Given that montane ecosystems are hot spots of biological diversity, an expanded and integrated programme for biogeographic surveys in montane regions should provide valuable insights for conservation biologists.  相似文献   

11.
Understanding the historical biogeography of this global biodiversity hotspot is as important to long-term conservation goals as ecology and evolution are to understanding current patterns and processes. Today’s geography is, however, misleading and typical of only ~2% of the last million years; >90% of that time the region’s land area was 1.5–2.0 times larger as mean sea levels were 62 m below today’s, climates were cooler, and extensive forests and savanna covered the emerged Sunda plains. The region’s land area varied two-fold as sea levels fluctuated up to ±50 m with each of ~50 Pleistocene glacial cycles, and forests expanded and contracted with oscillations in land area and seasonality. This dynamic geographic history is relevant to the development of biogeographic regionalism and shows that it is today’s forests that are refugial, not those of the Last Glacial Maximum. This history affects how species will adapt or shift their ranges in response to global warming and further decreases in land area (submergence of low-lying coastal areas) during the 21st century. The alternative is mass species extinction. The biota is also threatened by the continued destruction of forest, destruction of Mekong River flood-pulse based ecosystems, and continued human population growth. Human biogeography will become more important in conservation planning as tens of millions of people who depend on protected area forests, riverine ecosystems, and coastal habitats become environmental refugees. Conservation scientists need to become more involved in regional ecological education, environmental stewardship, and ecosystem-based adaptation to sustain as much as possible of this rich biota and the ecological services it provides.  相似文献   

12.
Geographic patterns of biodiversity result from broad-scale biogeographic and present-day ecological processes. The aim of this study was to investigate the relative importance of biogeographic history and ecology driving patterns of diversity in modern primate communities in Madagascar. I collected data on endemic lemur species co-occurrence from range maps and survey literature for 100 communities in protected areas. I quantified and compared taxonomic, phylogenetic, and functional dimensions of intra- and intersite diversity. I tested environmental and geographic predictors of diversity and endemism. I calculated deforestation rates within protected areas between the years 2000 and 2014, and tested if diversity is related to forest cover and loss. I found the phylogenetic structure of lemur communities could be explained primarily by remotely sensed plant productivity, supporting the hypothesis that there was ecological differentiation among ecoregions, while functional-trait disparity was not strongly related to environment. Taxonomic and phylogenetic diversity also increased with increasing topographic heterogeneity. Beta diversity was explained by both differences in ecology among localities and potential river barriers. Approximately 3000 km2 were deforested in protected areas since the year 2000, threatening the most diverse communities (up to 31%/park). The strong positive association of plant productivity and topographic heterogeneity with lemur diversity indicates that high productivity, rugged landscapes support greater diversity. Both ecology and river barriers influenced lemur community ecology and biogeography. These results underscore the need for focused conservation efforts to slow the loss of irreplaceable evolutionary and ecological diversity.  相似文献   

13.
Identifying the environmental conditions that drive biogeographic structure remains a major challenge of biogeography, evolutionary ecology and increasingly, conservation biology. Here, we use multivariate classification trees to assess the biogeographic structure of northeast Pacific (~ 26–58°N) rocky intertidal species (406 species of algae and invertebrates) from 102 field sites. Random forest analyses are used to assess the importance of 29 environmental variables, encompassing a broad range of potential drivers, to predict biogeographic structure. Analyses are repeated for species with different larval dispersal capabilities and by broad taxonomic categories (invertebrates and algae). Results show that overall biogeographic structure is in general agreement with classic classification schemes, but patterns are variable among species with different larval dispersal capabilities. Random forest models show a very high fit (pseudo r2 > 0.94) and indicate that biogeographic structure can be predicted by a relatively modest subset of variables. Upwelling related variables are the best overall predictors of biogeographic structure (nutrient concentrations, sea‐surface temperature, upwelling/downwelling seasonal switch index), but the relative importance of predictors is geographically variable and top predictors are dependent on the type of larval dispersal. Upwelling related variables are more important to predict biogeographic structure for invertebrates with lower‐medium dispersal capabilities and algae, whereas species with high larval dispersal (planktotrophic) are better predicted by a different subset of variables (i.e. salinity, precipitation seasonality). Our results lend support to the influence of coastal upwelling in structuring biogeographic patterns and highlight the potential for climate change‐induced alterations of upwelling regimes to profoundly affect biodiversity at biogeographic scales.  相似文献   

14.
Ecological niche models (ENMs) have a wide range of biological applications, particularly in conservation. To build these models, two sources of information are needed: occurrence records for the species of interest and environmental variables. However, taxonomic limits are often unclear, and the selection of occurrence data depends on the species concept being used. In this study we generated ENMs based on different taxonomic levels within the Dendrortyx group, which is comprised of three species and several subspecies; we analyzed the geographic and ecological distribution patterns and discuss the implications for the biogeography and conservation of this group. Our results suggest that the area with suitable climate depends on the taxonomic category used in the model, which in turn affects the interpretation of the importance of different biogeographic barriers and introduces variation into the potential differentiation of Dendrortyx. In terms of conservation, Dendrortyx macroura and Dendrortyx leucophrys are in a low risk category, that of “least concern,” although they may be amended to a higher category when their allopatric lineages are considered as the units for modeling. We suggest carrying out an a priori taxonomic analysis to facilitate the empirical identification of the units to be modeled in order to allow for a better ecological and biogeographic interpretation and more sound conservation policies.  相似文献   

15.
In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields.  相似文献   

16.
17.
As conservation biology has developed as a distinct discipline from ecology, conservation guidelines based on ecological theory have been largely cast aside in favor of theory-independent decision procedures for designing conservation reserves. I argue that this transition has failed to advance the field toward its aim of preserving biodiversity. The abandonment of island biogeography theory in favor of complementarity-based algorithms is a case in point. In what follows, I consider the four central objections raised against island biogeographic conservation guidelines, arguing that they fail to undermine the credibility of this framework as a conservation tool. At best, these objections call for a more careful application of this framework to conservation problems, not its wholesale abandonment. At the same time, complementarily-based algorithms are biased in favor of networks of small reserves containing non-overlapping species. These conditions threaten to promote inbreeding depression, genetic drift and other factors that increase a population’s risk of extinction. Therefore, recent developments in the field of conservation biology have arguably not contributed to its ultimate aim of preserving the maximum amount of biodiversity in the long run.
Stefan LinquistEmail:
  相似文献   

18.
19.
A primary focus of historical biogeography is to understand changes in species ranges, abundance and genetic connectivity, and changes in community composition. Traditionally, biogeographic inference has relied on distinct lines of evidence, including DNA sequences, fossils and hindcasted ecological niche models. In this review we propose that the development of integrative modeling approaches that leverage multiple distinct data types from diverse disciplines has the potential to revolutionize the field of biogeography. Although each data type contains information on a distinct aspect of species’ biogeographic histories, few studies formally integrate multiple types in analysis. For example, post hoc congruence among analyses based on different data types (e.g. fossils and genetics) is commonly assumed to indicate likely biogeographic histories. Unfortunately, analyses of different data often reach discordant conclusions. Thus, fundamental and unresolved debates continue regarding speed and timing of postglacial migration, location and size of glacial refugia, and degree of long distance dispersal. Formal statistical integration can help address these issues. More specifically, formal integration can leverage all available evidence, account for inherent biases associated with different data types, and quantify data and process uncertainty. Novel, quantitative integration of data and models across fields is now possible due to recent advances in cyberinfrastructure, spatial modeling, online and aggregated ecological databases, data processing and quantitative methods. Our purpose is to make the case for and give examples of rigorous integration of genetic, fossil and environmental/occurrence data for inferring biogeographic history. In particular, we 1) review the need for such a framework; 2) explain common data types and approaches used to infer biogeographic history (and the challenges with each); 3) review state‐of‐the‐art examples of data integration in biogeography; 4) lay out a series of novel, suggested improvements on current methods; and 5) provide an outlook on technical feasibility and future opportunities.  相似文献   

20.
Alexander von Humboldt was arguably the most influential scientist of his day. Although his fame has since lessened relative to some of his contemporaries, we argue that his influence remains strong—mainly because his approach to science inspired others and was instrumental in furthering other scientific disciplines (such as evolution, through Darwin, and conservation science, through Muir)—and that he changed the way that large areas of science are done and communicated. Indeed, he has been called the father of a range of fields, including environmental science, earth system science, plant geography, ecology and conservation. His approach was characterized by making connections between non‐living and living nature (including humans), based on interdisciplinary thinking and informed by large amounts of data from systematic, accurate measurements in a geographical framework. Although his approach largely lacked an evolutionary perspective, he was fundamental to creating the circumstances for Darwin and Wallace to advance evolutionary science. He devoted considerable effort illustrating, communicating and popularizing science, centred on the excitement of pure science. In biogeography, his influence remains strong, including in relating climate to species distributions (e.g. biomes and latitudinal and elevational gradients) and in the use of remote sensing and species distribution modelling in macroecology. However, some key aspects of his approach have faded, particularly as science fragmented into specific disciplines and became more reductionist. We argue that asking questions in a more Humboldtian way is important for addressing current global challenges. This is well‐exemplified by researching links between geodiversity and biodiversity. Progress on this can be made by (a) systematic data collection to improve our knowledge of biodiversity and geodiversity around the world; (b) improving our understanding of the linkages between biodiversity and geodiversity; and (c) developing our understanding of the interactions of geological, biological, ecological, environmental and evolutionary processes in biogeography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号