首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Plant chemical defenses and escape from natural enemies have been postulated to select for dietary specialization in herbivorous insects. In field and laboratory bioassays, we evaluated the effectiveness of intact and chemically modified larval shield defenses of the generalist Chelymorpha alternans and the specialists Acromis sparsa and Stolas plagiata (Chrysomelidae: Cassidinae) against three natural predators, using larvae reared on two morning glory (Convolvulaceae) species. We assessed whether: (1) specialists were better defended than generalists when both were fed and assayed on the same plant; (2) larval shield defenses were chemical, physical, or both; and (3) specialists exploit chemistry better than generalists. Live specialist larvae survived at higher rates than did generalists in predator bioassays with the bug Montina nigripes (Reduviidae), but there were no differences among groups against two species of Azteca ants (Hymenoptera: Dolichoderinae). Solvent leaching by H2O or MeOH significantly reduced shield efficacy for all species compared to larvae with intact shields. In contrast, freshly killed specialist larvae exhibited significantly lower capture rates and frequencies than the generalists. Although solvent leaching significantly reduced overall shield efficacy for freshly killed larvae of all species, the pattern of leaching effects differed between specialists and generalists, with H2O-leaching having a greater impact on the specialists. The overall vulnerability of the generalists appears due to lower chemical protection, which is ameliorated by increased escape behaviors, suggesting a selective trade-off between these defensive components. These experiments indicate that shield defenses are essential for larval survival and that specialists are superior at exploiting plant compounds residing in the aqueous fraction. Our results support the hypothesis that diet-specialized herbivorous insects have more effective defenses than generalists when both feed on the same plant due to the differential ability to exploit defensive precursors obtained from the host. The evolution of dietary specialization may therefore confer the advantage of enhanced enemy-free space.  相似文献   

2.
Reproductive altruism and cooperative brood care are key characteristics of eusocial insects and reasons for their ecological success. Yet, Hymenopteran societies are also the stage for a multitude of intracolonial conflicts. Recently, a conflict between adult and larval colony members over caste fate was described and evidence for overt conflict was uncovered in several bee species. In theory, diploid larvae of many Hymenopteran species should experience strong fitness benefits, if they would be able to change their developmental pathway towards the queen caste. However, larval self-determination potential is low in most advanced eusocial Hymenopterans, because workers often control larval food intake and queenworker caste dimorphisms are generally high. In the ant genus Hypoponera, larvae actively feed on food provided by workers and here we show extremely low queenworker size differences in these ants: the lowest in H. opacior, where fertile wingless (intermorphic) queens weigh on average only 13% more than workers. Thus, slightly better nutrition during development might change the fate of a Hypoponera larva from a completely sterile worker to a fertile queen. One possibility to obtain extra food for Hypoponera larvae with their well-developed mandibles would be to cannibalise adjacent larvae. Indeed, we observed frequently larval cannibalism in ant nests. Yet, adult workers apparently try to prohibit larval cannibalism by carefully separating larvae in the nest. Larvae, which were experimentally brought into close contact, were rapidly set apart. Workers further sorted larvae according to size and responded swiftly to decreasing food levels, by increasing inter-larval distance. Still, an experimental manipulation of the larval cannibalism rate in H. schauinslandi failed to provide conclusive evidence for the link between larval cannibalism and caste development. Hence, further experiments are needed to determine whether the widespread larval cannibalism in Hypoponera and the untypical brood distribution can be explained by an overt caste conflict. Received 18 December 2006; revised 2 August and 20 September 2007; accepted 21 September 2007.  相似文献   

3.
A variety of arthropods, particularly insects, have developed myrmecophilous interactions with ants to gain access to resources and/or for protection. Among these myrmecophiles, only a few examples have been documented in the Coccinellidae, most of them involving species able to feed on ant-tended Hemiptera. We report here a new case of obligate myrmecophily in the coccinellid Diomus thoracicus. Larvae are invariably and exclusively found in the nests of the ant Wasmannia auropunctata and seem to rely on ant brood as their only food source. Not only do ant workers show no aggressiveness toward the D. thoracicus larvae in their behavioral interactions at the colonial level, but also at the species level; while coccinellid adults are always attacked. The integration of the larvae inside of the ant nests is based on their chemical mimicry of the host's cuticular cues. Therefore, given the presence of the D. thoracicus larvae inside of the ant's nest, their predation on Wasmannia brood and their chemical mimicry, this species can be considered a specific parasite of W. auropunctata. Overall, this new case of myrmecophily not only specifically involves a highly invasive ant species, but also provides insights into the evolution of myrmecophily and myrmecophagy in coccinellids.  相似文献   

4.
Summary The mortality of Maculinea arion caterpillars was measured in both laboratory and wild Myrmica nests, and found to be nearly 3 times higher in nests that had queen ants present. This is attributed to queen effect, which causes worker ants in nests with queens to attack large ant larvae (gynes) that would otherwise develop into new queens. Maculinea arion caterpillars mimic Myrmica larvae, and are usually attacked during the first 10 days after adoption, when they pass through the size range of ant gyne larvae. Caterpillars are also likely to be attacked during this period because their nethod of feeding brings them into close contact with the skins of large ant larvae, which contain gyne larval pheromones; older caterpillars are large enough to eat larvae without their exposed surfaces contacting the larval skin. In the wild, many caterpillars of Maculinea arion die in ant nests, and this has been shown in previous work to be the key factor that determines changes in their abundance from year to year. It is suggested that queen effect can be an important cause of these deaths, and one that particularly affects populations of butterflies that breed on sites with long-established plagioclimaxes of short turf rather than short-lived grass-land successions.  相似文献   

5.
Maculinea butterflies are social parasites of Myrmica ants. Methods to study the strength of host ant specificity in the MaculineaMyrmica association include research on chemical and acoustic mimicry as well as experiments on ant adoption and rearing behaviour of Maculinea larvae. Here we present results of laboratory experiments on adoption, survival, development and integration of M. teleius larvae within the nests of different Myrmica host species, with the objective of quantifying the degree of specialization of this Maculinea species. In the laboratory, a total of 94 nests of four Myrmica species: M. scabrinodis, M. rubra, M. ruginodis and M. rugulosa were used. Nests of M. rubra and M. rugulosa adopted M. teleius larvae more readily and quickly than M. ruginodis colonies. No significant differences were found in the survival rates of M. teleius larvae reared by different ant species. Early larval growth of M. teleius larvae differed slightly among nests of four Myrmica host species. Larvae reared by colonies of M. rugulosa which were the heaviest at the beginning of larval development had the lowest mean larval body mass after 18 weeks compared to those reared by other Myrmica species. None of the M. teleius larvae was carried by M. scabrinodis or M. rubra workers after ant nests were destroyed, which suggests a lack of integration with host colonies. Results indicate that Myrmica species coming from the same site differ in their ability to adopt and rear M. teleius larvae but there was no obvious adaptation of this butterfly species to one of the host ant species. This may explain why, under natural conditions, all four ants can be used as hosts of this butterfly species. Slight advantages of particular Myrmica species as hosts at certain points in butterfly larval development can be explained by the ant species biology and colony structure rather than by specialization of M. teleius.  相似文献   

6.
Tephritid fruit fly parasitoid guilds are dominated by solitary koinobiont species that attack different host stages, but most emerge as adults from host puparia. Previous studies suggest intrinsic competitive superiority by the egg-attacking parasitoid Fopius arisanus (Sonan) against all larval-attacking parasitoids in Hawaii. In this study, we tested the early-acting competitive superiority prediction in relation to the co-evolutionary history of competition between an egg–larval parasitoid (Fopius ceratitivorus Wharton), and each of three larval parasitoids [Psyttalia concolor (Szépligeti), Diachasmimorpha kraussii (Fullaway), and Diachasmimorpha longicaudata (Ashmead)]. F. ceratitivorus and P. concolor share a common origin (eastern Africa), while D. kraussii is an Australian species, and D. longicaudata is from Southeast Asia. The outcomes of intrinsic competition between the egg-attacking parasitoid and each of the three larval-attacking parasitoids within their common host, the Mediterranean fruit fly Ceratitis capitata (Wiedemann) were compared. F. ceratitivorus invariably eliminated the co-evolved P. concolor through physiological suppression of the later-attacking parasitoid’s egg development, providing evidence that supports the early-acting-superiority hypothesis. However, F. ceratitivorus was unable to suppress development of the two non co-evolved larval parasitoids. Instead, the larvae of both later-acting parasitoid species physically killed F. ceratitivorus larvae inside the host. The results suggest that co-evolutionary history influences competitive superiority. The evolution of inter-specific competition and its implications for biological control are discussed.  相似文献   

7.
Generalist predators are frequently seen as evolutionary forces that narrow the host range in herbivorous insects. Predators may favour specialization of herbivores on host plants containing toxic chemicals (which can be used by herbivores for their own defence) if host plant‐derived defences provide better protection from enemies than do autogenously produced defences. We compared the effectiveness of these two defensive strategies in the larvae of six species of leaf beetle (Chrysomelidae) against wood ants (Formica rufa group) in field experiments. Ants were more strongly repelled by larvae with host plant‐derived, salicylaldehyde‐containing secretions than by larvae with various autogenous secretions, but collectively foraging ants ultimately overcame any type of chemical defence by social interactions, chemical signalling, and olfactory learning. As a result, ants killed all larvae of Chrysomela lapponica defended by salicylaldehyde‐containing secretions within 2 days of their introduction to willows within 15 m of ant nests. We conclude that in the field neither type of chemical defence provides complete protection against wood ants in the vicinity of their nests, and that evolutionary shifts from autogenous production of secretion to sequestration of plant allelochemicals in leaf beetles may be favoured mostly at low ant densities on the periphery of ant foraging areas.  相似文献   

8.
Abstract

Invertebrate predation on the soil-living stages of Australian soldier fly may be a significant factor in the regulation of this pest of North Island grasslands. Laboratory and field experiments on larvae of Conoderus exsul and Agrypnus variabilis (Elateridae), adults and larvae of Thyreocephalus orthodoxus (Staphylinidae), and adults of Rhytisternus miser (Carabidae) suggest that all may influence the densities of soldier fly through predation on larvae and/or eggs. The functional responses of C. exsul, A. variabilis, and T. orthodoxus to soldier fly larval density are discussed. Selective removal of predators from pasture with insecticide showed that predation may account for up to 75% loss of the early instars of soldier fly.  相似文献   

9.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

10.
Workers of most social insects can distinguish between nestmates and non-nestmates, and actively attack the latter if they attempt to intrude into the nest or surrounding territory. Nevertheless, there are many records of heterospecific organisms living within the nests of social insects, and they are thought to gain access through chemical mimicry. The salticid spider Cosmophasis bitaeniata lives within the leaf nests of the ant Oecophylla smaragdina, where it preys on the ant larvae. We investigated, using behavioural bioassays and chemical analyses, whether the previously reported resemblance of the cuticular hydrocarbons of ant and spider was colony-specific. Behavioural experiments revealed that the spiders can distinguish between nestmate and non-nestmate major workers and are less inclined to escape when confined with ants that are nestmates. More significantly, C. bitaeniata were more likely to capture ant larvae from nestmate minor workers than non-nestmate minor workers. The chemical analyses revealed that the cuticular hydrocarbon profiles of the spiders and the major workers of the ant colonies were colony-specific. However, the hydrocarbon profiles of C. bitaeniata do not match those of the major workers of O. smaragdina from the same colony. Perhaps the colony-specific cuticular hydrocarbon profiles of C. bitaeniata function to obtain prey from the minor workers rather than avoid eliciting aggression from the major workers.  相似文献   

11.
The influence of wet conditions and low pO2 on the survival and development of non-feeding final instar larvae and puparia of Calliphora vomitoria has been investigated. The larvae delay the formation of the puparium in wet conditions in air and in dry or wet conditions in 10 and 5% oxygen. This may be related to the susceptibility of the newly formed puparia to oxygen shortage. The pupal respiratory horns play an important part in maintaining O2 uptake when the puparia are surrounded by particles covered with a film of water but are not involved in aiding survival in low pO2. Zero age puparia are killed by a 2 day exposure to 10% O2 but later stages can continue to develop in this gas. Fifty per cent of the 0, 1 and 9 day old puparia are killed by about a 12 hr exposure to 1% O2 whereas 50 per cent of the 2 to 8 day old puparia can survive over 1·5 days exposure to this gas. Development, as measured by respiration rates and the timing of the emergence of the adults, is delayed by 1% O2 by the amount of time that the insects spend in that gas. However, the first phase of elongation of the pharate adult longitudinal flight muscle, occurring between the third and fourth day of puparial life, is only slightly slowed down in 1% O2. The variations in susceptibility to 1% O2 and the growth of the muscles are discussed in relation to published accounts of protein synthesis in the puparium.  相似文献   

12.
Abstract

The endemic New Zealand genus Eulimnia and its two species are redescribed. Data are presented on the life cycle of E. philpotti Tonnoir & Malloch, and the habitat, geographical distribution, phenology, and biological features of adults and immature stages are discussed. Adults are found in permanently wet marshes, where the larvae prey on fingernail clams (Bivalvia: Sphaeriidae) while completely submerged. Mature larvae form puparia among vegetation or debris above the water level. The immature stages of E. philpotti are described. The genus is placed in tribe Tetanocerini, and its taxonomic position is discussed.  相似文献   

13.
Otto Nielsen 《BioControl》2003,48(4):431-446
Isolates of different Steinernema species (S. affine, S. bicornutum, S. feltiae and Steinernema C1) were used in mortality assays with third instar larvae of Delia radicum (L.) (Diptera: Anthomyiidae). The nematode isolates had been obtained by baiting soil regularly grown with cabbage. One isolate (S. feltiae) was the result of a natural infection of a D. radicum puparium. The highest mortality (77%) was obtained with an isolate of S. feltiae (DK1). The isolate DK1 was also used in tests with all larval stages of D. radicum. Mortality around 60% was observed for second and third instar larvae, while first instar larvae showed very low or no susceptibility. Maximum mortality of second and third instar larvae was reached applying only 25 nematodes per larva. Observations of larvae that pupated revealed that some of these puparia contained nematodes. Experiments with hatching puparia showed that a high proportion was infected by nematodes if the flies were prevented from leaving nematode-containing soil. In addition to mortality, the ability of the nematodes to successfully reproduce in the insects was studied. It was found that the species S. feltiae and S. bicornutum reproduced in D. radicum larvae and adults with S. feltiae being the most successful.  相似文献   

14.
Chemical mimicry and camouflage based on cuticular hydrocarbons (CHCs) are adaptive strategies that are frequently observed in myrmecophilous insects. The larvae of several lycaenid butterfly species that exhibit obligate associations with specific ant species have been reported to use chemical mimicry. However, little is known about the strategies used by the larvae of species that have facultative associations with multiple ant species. We attempted to reveal the effects of larval CHC profiles on interactions with Formica japonica workers, using three lycaenid species, two facultative ant‐associated (Lycaeides argyrognomon and Zizeeria maha) and one non‐ant‐associated (Lycaena phlaeas), which commonly possess n‐alkanes as the major CHCs. In field bioassays, the lycaenid larvae were attacked by ant workers less often than larvae of Papilio polytes (Papilionidae), the CHCs of which were rich in 7‐alkenes. Treating the lycaenid larvae with 7‐heptacosene and 9‐heptacosene significantly activated ant aggression (biting), whereas treating them with n‐heptacosane, n‐octacosane and 13‐methylheptacosane had little effect. Furthermore, larvae of Pieris rapae (Pieridae), possessing n‐alkanes as the dominant CHCs, suffered an intermediate level of ant biting between the lycaenid and Pa. polytes larvae. However, treatments of the P. rapae larvae with 7‐heptacosene and 9‐heptacosene significantly affected the frequency of ant biting. These findings suggest that the absence of alkenes in larval CHC profiles is an effective means of circumventing predation by ants and allows lycaenid larvae to inhabit the foraging territory of predaceous ants, at least to some extent.  相似文献   

15.
《Biological Control》2001,20(1):8-15
Understanding the insect natural history in a caged-layer poultry house is essential to developing Integrated Pest Management strategies. In this study we observed the interaction of three insects commonly found in poultry manure: a filth fly predator, Carcinops pumilio (Erichson) (Histeridae), and two poultry pests, the house fly, Musca domestica L. (Muscidae), and the darkling beetle, Alphitobius diaperinus (Panzer) (Tenebrionidae). Manure samples were collected weekly and the insects were extracted using Berlese–Tullgren funnels. Collected insects were identified to species and life stage. When C. pumilio populations equaled or exceeded those of the larval house fly, subsequent adult house fly populations were not considered pestiferous. C. pumilio adult and larval cohorts varied significantly among poultry houses. Few C. pumilio larvae were found in houses with abundant darkling beetle populations, suggesting a negative impact on the establishment of C. pumilio. Laboratory studies confirmed that larval darkling beetles significantly reduce the survival of C. pumilio eggs and larvae. Adult darkling beetles did not reduce C. pumilio egg or larval survival.  相似文献   

16.
Supercooling points (SCPs) and low temperature survival were determined for diapausing and nondiapausing larvae of the ectoparasitoid Nasonia vitripennis. Neither nondiapausing nor diapausing larvae could survive tissue freezing. The SCP profiles were nearly identical for nondiapause-destined (-27 degrees C) and diapausing larvae (-25 degrees C), but these values were not indicative of the lower limits of tolerance in either type of larvae: larvae were killed by chilling at temperatures well above the SCP. Diapausing larvae could withstand low temperature exposures 3-8 times longer than their nondiapausing counterparts. Low temperature survival was enhanced in diapausing and nondiapausing larvae by their encasement within the puparium of the host flesh fly, SARCOPHAGA CRASSIPALPIS: the LT(50)s determined for nondiapausing and diapausing larvae enclosed by fly puparia were 2-3 times higher than values calculated for larvae removed from the puparia. Additional low temperature protection was gained through acquisition of host cryoprotectants during larval feeding: nondiapausing parasitoid larvae that fed on diapausing flesh fly pupae with high levels of glycerol were able to survive exposure to a subzero temperature 4-9 times longer than wasps reared on nondiapausing fly pupae that contained lower quantities of glycerol. Alanine may also contribute to the cold hardiness of N. vitripennis, as evidenced by the fact that larvae feeding on diapausing fly pupae both contained higher concentrations of alanine and exhibited greater cold hardiness. The results thus demonstrate that several critical features of cold hardiness in the wasp are derived from biochemical and physical attributes of the host.  相似文献   

17.
The larvae of the lycaenid subfamily Curetinae have never been reported to be associated with ants. Observations on Curetis regula Evans from Brunei are presented which show that this species may be tended by ants both as larvae and adults. The observations are discussed in relation to a recent review on lycaenid/ant associations, u is suggested that the Curetinae will be found to be associated with ants when more species have been reared, on evidence of the larval tentacle organs and apparent ‘pore cupolas’, both of which are ant adaptations. More studies are needed on Curetis biology and larval morphology to resolve the relationships of this enigmatic genus within the Lycaenidae.  相似文献   

18.
Female fruit flies, Drosophila melanogaster, lay their eggs on decaying plant material. Foraging fly larvae strongly depend on the availability of dietary microbes, such as yeasts, to reach the adult stage. In contrast, strong interference competition with filamentous fungi can cause high mortality among Drosophila larvae. Given that many insects are known for employing beneficial microbes to combat antagonistic ones, we hypothesized that fly larvae engaged in competition with the noxious mould Aspergillus nidulans benefit from the presence of dietary yeast species, especially when they are associated with increasingly species rich yeast communities (ranging from one to six yeast species per community). On a nutrient‐limited fruit substrate infested with A. nidulans, both larval survival and development time were positively affected by more diverse yeast communities. On a mould‐free fruit substrate, merely larval development but not survival was found to be affected by increasing species richness of dietary yeasts. Not only yeast diversity had an effect on D. melanogaster life‐history traits, but also the identity of the yeast combinations. These findings demonstrate the importance of the structure and diversity of microbial communities in mutualistic animal–microbe interactions.  相似文献   

19.
We surveyed the Mesostigmatid mite fauna of nests of the black stork Ciconia nigra, to determine the role of these mites in the biology of their hosts. We present preliminary results obtained on the basis of material collected from 31 nests. A total of 1,615 mite specimens was recorded, belonging to 39 species. The most abundant species were Dendrolaelaps strenzkei, Apionoseius infirmus, Macrocheles merdarius and Macrocheles ancyleus, which constituted more than 65% of all the specimens recorded. The presence of large numbers of predatory mites could be beneficial to the birds, if they feed on the eggs and larvae of the bird’s parasites. It is likely that many of the mite species found in these nests were carried there by phoresy on insects, mainly Coleoptera.  相似文献   

20.
A field study was carried out for 6 wks to assess, from both an efficiency and economic perspective, the effect of individual and integrated success of feeding and topical applications of two formulations of Bacillus thuringiensis var. israelensis (Bti) in controlling house fly (Musca domestica L.) larvae and adults in poultry houses. There was no significant difference between the 1 g and 2 g L?1 spray applications of Bti. In the absence of spray applications, no significant differences in larval mortalities were observed between the 250 mg and 500 mg kg?1 feed applications. The percentage mortality of larvae accomplished as a result of using a combination of 250 mg kg?1Bti feed and 2 g L?1 spray applications was equivalent to that obtained as a result of combining 500 mg kg?1Bti and 1g L?1 spray applications. Treatment with Bti caused significant reductions in the emergence (up to 74%) of house fly adults compared to the control. The fact that the emergence of adult house flies was affected by Bti treatments implies that Bti has sublethal effects on house fly larvae. The cost–benefit analysis (expressed in terms of mortality of larvae growing) indicated that the most effective combination for house fly larvae and adult house fly emergence control was the 500 mg kg?1 of feed and 2 g L?1 spray application combination that resulted in 67% larval mortality and a 74% decrease in adult house fly emergence. This study presents commercial users with various alternatives for possible combinations of the two Bti formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号