首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Replication repair mediates error-free bypass of DNA damage in a series of steps that include regression of the replication fork, primer-terminus switching to use the other daughter strand as an undamaged template, primer extension, primer switching back to its cognate template with the primer terminus now having bypassed the damage, and fork rearrangement to a normal configuration. By both genetic and biochemical criteria, bacteriophage T4 catalyzes replication repair with two alternative sets of proteins, one including the gp32 SSB and the gp41 DNA helicase and the other including the UvsX recombinase. In each pathway, synthesis is conducted by the gp43 DNA polymerase. Here we show that defects in gp32, gp41 or UvsX that impair replication repair also increase mutation rates generally, but especially for templated mutations. Such templated mutations are associated with palindromic or direct repeats that are either perfect or imperfect. Models of templated mutagenesis require that the primer terminus switches to an ectopic template, but one that yields mutations instead of error-free bypass. We suggest that the proteins that conduct replication repair normally direct a blocked primer strand specifically to the other daughter strand with considerable accuracy, but that strand switching becomes promiscuous when these proteins are mutationally impaired, thus promoting templated mutations.  相似文献   

2.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

3.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

4.
The bacteriophage T4 59 protein (gp59) plays a vital role in recombination and replication by promoting the assembly of the gene 41 helicase (gp41) onto DNA, thus enabling replication as well as strand exchange in recombination. Loading of the helicase onto gp32 (the T4 single strand binding protein)-coated single-stranded DNA requires gp59 to remove gp32 and replace it with gp41. Cross-linking studies between gp32 and gp59 reveal an interaction between Cys-166 of gp32 and Cys-42 of gp59. Since Cys-166 lies in the DNA binding core domain of gp32, this interaction may affect the association of gp32 with DNA. In the presence of gp32 or DNA, gp59 is capable of forming a multimer consisting of at least five gp59 subunits. Kinetics studies suggest that gp59 and gp41 exist in a one-to-one ratio, predicting that gp59 is capable of forming a hexamer (Raney, K. D., Carver, T. E., and Benkovic, S. J. (1996) J. Biol. Chem. 271, 14074-14081). The C-terminal A-domain of gp32 is needed for gp59 oligomer formation. Cross-linking has established that gp59 can interact with gp32-A (a truncated form of gp32 lacking the A-domain) but cannot form higher species. The results support a model in which gp59 binds to gp32 on a replication fork, destabilizing the gp32-single-stranded DNA interaction concomitant with the oligomerization of gp59 that results in a switching of gp41 for gp32 at the replication fork.  相似文献   

5.
Lesions in the template DNA strand block the progression of the replication fork. In the yeast Saccharomyces cerevisiae, replication through DNA lesions is mediated by different Rad6-Rad18-dependent means, which include translesion synthesis and a Rad5-dependent postreplicational repair pathway that repairs the discontinuities that form in the DNA synthesized from damaged templates. Although translesion synthesis is well characterized, little is known about the mechanisms that modulate Rad5-dependent postreplicational repair. Here we show that yeast Rad5 has a DNA helicase activity that is specialized for replication fork regression. On model replication fork structures, Rad5 concertedly unwinds and anneals the nascent and the parental strands without exposing extended single-stranded regions. These observations provide insight into the mechanism of postreplicational repair in which Rad5 action promotes template switching for error-free damage bypass.  相似文献   

6.
DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.  相似文献   

7.
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.  相似文献   

8.
The uvsX and uvsY genes are essential to genetic recombination, recombination-dependent DNA synthesis and to the repair of DNA damage in bacteriophage T4. Purified UvsX protein has been shown to catalyze strand exchange and D-loop formation in vitro, but the role of UvsY protein has been unclear. We report that UvsY protein enhances strand exchange by UvsX protein by interacting specifically with UvsX protein: gene 32 protein (gp32) is not necessary for this effect and UvsY protein has no similar effect on the RecA protein of E. coli. UvsY protein, like UvsX protein, protects single-stranded DNA from digestion by nucleases, but, unlike UvsX protein, shows no ability to protect double-stranded DNA. UvsY protein enhances the rate of single-stranded-DNA-dependent ATP hydrolysis by UvsX protein, particularly in the presence of gp32 or high concentrations of salt, factors that otherwise reduce the ATPase activity of UvsX protein. The enhancement of ATP hydrolysis by UvsY protein is shown to result from the ability of UvsY protein to increase the affinity of UvsX protein for single-stranded DNA.  相似文献   

9.
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase.  相似文献   

10.
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.  相似文献   

11.
Daughter strand gaps formed upon interruption of replication at DNA lesions in Escherichiacoli can be repaired by either translesion DNA synthesis or homologous recombination (HR) repair. Using a plasmid-based assay system that enables discrimination between strand transfer and template switching (information copying) modes of HR gap repair, we found that approximately 80% of strand gaps were repaired by physical strand transfer from the donor, whereas approximately 20% appear to be repaired by template switching. HR gap repair operated on both small and bulky lesions and largely depended on RecA and RecF but not on the RecBCD nuclease. In addition, we found that HR was mildly reduced in cells lacking the RuvABC and RecG proteins involved in resolution of Holliday junctions. These results, obtained for the first time under conditions that detect the two HR gap repair mechanisms, provide in vivo high-resolution molecular evidence for the predominance of the strand transfer mechanism in HR gap repair. A small but significant portion of HR gap repair appears to occur via a template switching mechanism.  相似文献   

12.
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.  相似文献   

13.
The T4 bacteriophage gene 43 (T4 DNA polymerase), 32 (DNA helix-destabilizing protein), and 45 proteins and the complex of the gene 44 and 62 proteins are all required for DNA synthesis beginning at single-stranded breaks in duplex DNA. This synthesis occurs by strand displacement and is not dependent on ribonucleotides, the T4 gene 41 protein, or the T4 initiating protein, each of which is required to begin new chains on single-stranded templates. Electron microscopic analysis shows that duplex molecules with long single-stranded branches are the predominant products of this strand displacement synthesis.  相似文献   

14.
Gisela Mosig 《Genetics》1985,110(2):159-171
Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins.  相似文献   

15.
The T4 gp59 protein is the major accessory protein of the phage's replicative DNA helicase, gp41. gp59 helps load gp41 at DNA replication forks by promoting its assembly onto single-stranded (ss) DNA covered with cooperatively bound molecules of gp32, the T4 single-strand DNA binding protein (ssb). A gp59-gp32-ssDNA ternary complex is an obligatory intermediate in this helicase loading mechanism. Here, we characterize the properties of gp59-gp32-ssDNA complexes and reveal some of the biochemical interactions that occur within them. Our results indicate the following: (i) gp59 is able to co-occupy ssDNA pre-saturated with either gp32 or gp32-A (a truncated gp32 species lacking interactions with gp59); (ii) gp59 destabilizes both gp32-ssDNA and (gp32-A)-ssDNA interactions; (iii) interactions of gp59 with the A-domain of gp32 alter the ssDNA-binding properties of gp59; and (iv) gp59 organizes gp32-ssDNA versus (gp32-A)-ssDNA into morphologically distinct complexes. Our results support a model in which gp59-gp32 interactions are non-essential for the co-occupancy of both proteins on ssDNA but are essential for the formation of structures competent for helicase assembly. The data argue that specific "cross-talk" between gp59 and gp32, involving conformational changes in both, is a key feature of the gp41 helicase assembly pathway.  相似文献   

16.
Break-induced replication (BIR) proceeds via a migrating D-loop for hundreds of kilobases and is highly mutagenic. Previous studies identified long single-stranded (ss) nascent DNA that accumulates during leading strand synthesis to be a target for DNA damage and a primary source of BIR-induced mutagenesis. Here, we describe a new important source of mutagenic ssDNA formed during BIR: the ssDNA template for leading strand BIR synthesis formed during D-loop migration. Specifically, we demonstrate that this D-loop bottom template strand (D-BTS) is susceptible to APOBEC3A (A3A)-induced DNA lesions leading to mutations associated with BIR. Also, we demonstrate that BIR-associated ssDNA promotes an additional type of genetic instability: replication slippage between microhomologies stimulated by inverted DNA repeats. Based on our results we propose that these events are stimulated by both known sources of ssDNA formed during BIR, nascent DNA formed by leading strand synthesis, and the D-BTS that we describe here. Together we report a new source of mutagenesis during BIR that may also be shared by other homologous recombination pathways driven by D-loop repair synthesis.  相似文献   

17.
Temperature-sensitive (ts) mutants representative of a number of genes of phage T4 were crossed with rII mutants to allow isolation of ts, rII double-mutant recombinants. The rII mutations used were characterized as frameshift mutations primarily on the basis of their revertability by proflavine. For each ts, rII double mutant, the effect of the ts mutation on spontaneous reversion of the rII mutation was determined over a range of incubation temperatures. A strong enhancement in reversion of two different rII mutants was detected when they were combined with tsL56, a mutation in gene 43 [deoxyribonucleic acid (DNA) polymerase]. Three other mutants defective in gene 43 enhanced reversion about fourfold. Two mutations in gene 32, which specifies a protein necessary for DNA replication, enhanced reversion about 5-fold and 18-fold, respectively. Two additional mutations in gene 43 and two in gene 32 had no effect. Fivefold and threefold enhancements in reversion were also found with mutations in genes 44 (DNA synthesis) and 47 (deoxyribonuclease), respectively. No significant effect was found with mutations in seven additional genes. The results of other workers suggest that frameshift mutations arise from errors in strand alignment during repair synthesis occurring at chromosome tips. Our results show that such errors can be enhanced by mutations in the DNA polymerase, the gene 32 protein, and the enzymes specified by genes 44 and 47. This implies that these proteins are employed in the repair process occurring at chromosome tips and that mutational errors in these proteins can lead to loss of ability to recognize and reject strand misalignments.  相似文献   

18.
We have recently demonstrated that HIV-1 RT mutants characterized by low dNTP binding affinity display significantly reduced dNTP incorporation kinetics in comparison to wild-type RT. This defect is particularly emphasized at low dNTP concentrations where WT RT remains capable of efficient synthesis. Kinetic interference in DNA synthesis can induce RT pausing and slow down the synthesis rate. RT stalling and slow synthesis rate can enhance RNA template cleavage by RT-RNase H, facilitating transfer of the primer to a homologous template. We therefore hypothesized that reduced dNTP binding RT mutants can promote template switching during minus strand synthesis more efficiently than WT HIV-1 RT at low dNTP concentrations. To test this hypothesis, we employed two dNTP binding HIV-1 RT mutants, Q151N and V148I. Indeed, as the dNTP concentration was decreased, the template switching frequency progressively increased for both WT and mutant RTs. However, as predicted, the RT mutants promoted more transfers compared with WT RT. The WT and mutant RTs were similar in their intrinsic RNase H activity, supporting that the elevated template switching efficiency of the mutants was not the result of the mutations enhancing RNase H activity. Rather, kinetic interference leading to stalled DNA synthesis likely enhanced transfers. These results suggest that the RT-dNTP substrate interaction mechanistically influences strand transfer and recombination of HIV-1 RT.  相似文献   

19.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

20.
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1–2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号