首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.  相似文献   

2.
The function of human XPA protein, a key subunit of the nucleotide excision repair pathway, has been examined with site-directed substitutions in its putative DNA-binding cleft. After screening for repair activity in a host-cell reactivation assay, we analyzed mutants by comparing their affinities for different substrate architectures, including DNA junctions that provide a surrogate for distorted reaction intermediates, and by testing their ability to recruit the downstream endonuclease partner. Normal repair proficiency was retained when XPA mutations abolished only the simple interaction with linear DNA molecules. By contrast, results from a K141E K179E double mutant revealed that excision is crucially dependent on the assembly of XPA protein with a sharp bending angle in the DNA substrate. These findings show how an increased deformability of damaged sites, leading to helical kinks recognized by XPA, contributes to target selectivity in DNA repair.  相似文献   

3.
Nucleotide excision repair (NER) is carried out by xeroderma pigmentosum (XP) factors. Before the excision reaction, DNA damage is recognized by a complex originally thought to contain the XP group C responsible gene product (XPC) and the human homologue of Rad23 B (HR23B). Here, we show that centrin 2/caltractin 1 (CEN2) is also a component of the XPC repair complex. We demonstrate that nearly all XPC complexes contain CEN2, that CEN2 interacts directly with XPC, and that CEN2, in cooperation with HR23B, stabilizes XPC, which stimulates XPC NER activity in vitro. CEN2 has been shown to play an important role in centrosome duplication. Thus, those findings suggest that the XPC-CEN2 interaction may reflect coupling of cell division and NER.  相似文献   

4.
The Xeroderma Pigmentosum group C (XPC) protein is indispensable to global genomic repair (GGR), a subpathway of nucleotide excision repair (NER), and plays an important role in the initial damage recognition. XPC can be modified by both ubiquitin and SUMO in response to UV irradiation of cells. Here, we show that XPC undergoes degradation upon UV irradiation, and this is independent of protein ubiquitylation. The subunits of DDB-Cul4A E3 ligase differentially regulate UV-induced XPC degradation, e.g DDB2 is required and promotes, whereas DDB1 and Cul4A protect the protein degradation. Mutation of XPC K655 to alanine abolishes both UV-induced XPC modification and degradation. XPC degradation is necessary for recruiting XPG and efficient NER. The overall results provide crucial insights regarding the fate and role of XPC protein in the initiation of excision repair.  相似文献   

5.
Complementation group C of xeroderma pigmentosum (XP) represents one of the most common forms of this cancer-prone DNA repair syndrome. The primary defect is located in the subpathway of the nucleotide excision repair system, dealing with the removal of lesions from the non-transcribing sequences ('genome-overall' repair). Here we report the purification to homogeneity and subsequent cDNA cloning of a repair complex by in vitro complementation of the XP-C defect in a cell-free repair system containing UV-damaged SV40 minichromosomes. The complex has a high affinity for ssDNA and consists of two tightly associated proteins of 125 and 58 kDa. The 125 kDa subunit is an N-terminally extended version of previously reported XPCC gene product which is thought to represent the human homologue of the Saccharomyces cerevisiae repair gene RAD4. The 58 kDa species turned out to be a human homologue of yeast RAD23. Unexpectedly, a second human counterpart of RAD23 was identified. All RAD23 derivatives share a ubiquitin-like N-terminus. The nature of the XP-C defect implies that the complex exerts a unique function in the genome-overall repair pathway which is important for prevention of skin cancer.  相似文献   

6.
Human centrin 2 is a component of the nucleotide excision repair system, as a subunit of the heterotrimer including xeroderma pigmentosum group C protein (XPC) and hHR23B. The C-terminal domain of centrin (C-HsCen2) binds strongly a peptide from the XPC protein (P1-XPC: N(847)-R(863)). Here, we characterize the solution Ca(2+)-dependent structural and molecular features of the C-HsCen2 in complex with P1-XPC, mainly using NMR spectroscopy and molecular modeling. The N-terminal half of the peptide, organized as an alpha helix is anchored into a deep hydrophobic cavity of the protein, because of three bulky hydrophobic residues in position 1-4-8 and electrostatic contacts with the centrin helix E. Investigation of the whole centrin interactions shows that the N-terminal domain of the protein is not involved in the complex formation and is structurally independent from the peptide-bound C-terminal domain. The complex may exist in three different binding conformations corresponding to zero, one, and two Ca(2+)-bound states, which may exchange with various rates and have distinct structural stability. The various features of the intermolecular interaction presented here constitute a centrin-specific mode for the target binding.  相似文献   

7.
Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome, which is characterized by genome instability, cancer susceptibility, and premature aging. To better define the cellular function of the RecQ4 protein, we investigated the subcellular localization of RecQ4 upon treatment of cells with different DNA-damaging agents including UV irradiation, 4-nitroquinoline 1-oxide, camptothecin, etoposide, hydroxyurea, and H(2)O(2). We found that RecQ4 formed discrete nuclear foci specifically in response to UV irradiation and 4-nitroquinoline 1-oxide. We demonstrated that functional RecQ4 was required for the efficient removal of UV lesions and could rescue UV sensitivity of RecQ4-deficient Rothmund-Thomson syndrome cells. Furthermore, UV treatment also resulted in the colocalization of the nuclear foci formed with RecQ4 and xeroderma pigmentosum group A in human cells. Consistently, RecQ4 could directly interact with xeroderma pigmentosum group A, and this interaction was stimulated by UV irradiation. By fractionating whole cell extracts into cytoplasmic, soluble nuclear, and chromatin-bound fractions, we observed that RecQ4 protein bound more tightly to chromatin upon UV irradiation. Taken together, our findings suggest a role of RecQ4 in the repair of UV-induced DNA damages in human cells.  相似文献   

8.
Friedberg EC 《DNA Repair》2004,3(2):183, 195
Most forms of the human hereditary disease xeroderma pigmentosum (XP) are due to a defect in nucleotide excision repair of DNA damage in skin cells associated with exposure to sunlight. This discovery by James Cleaver had an important impact on our understanding of nucleotide excision repair in mammals.  相似文献   

9.
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the inter-action of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E ? K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.  相似文献   

10.
11.
The xeroderma pigmentosum group A protein (XPA) is a core component of nucleotide excision repair (NER). To coordinate early stage NER, XPA interacts with various proteins, including replication protein A (RPA), ERCC1, DDB2, and TFIIH, in addition to UV-damaged or chemical carcinogen-damaged DNA. In this study, we investigated the effects of mutations in the RPA binding regions of XPA on XPA function in NER. XPA binds through an N-terminal region to the middle subunit (RPA32) of the RPA heterotrimer and through a central region that overlaps with its damaged DNA binding region to the RPA70 subunit. In cell-free NER assays, an N-terminal deletion mutant of XPA showed loss of binding to RPA32 and reduced DNA repair activity, but it could still bind to UV-damaged DNA and RPA. In contrast, amino acid substitutions in the central region reduced incisions at the damaged site in the cell-free NER assay, and four of these mutants (K141A, T142A, K167A, and K179A) showed reduced binding to RPA70 but normal binding to damaged DNA. Furthermore, mutants that had one of the four aforementioned substitutions and an N-terminal deletion exhibited lower DNA incision activity and binding to RPA than XPA with only one of these substitutions or the deletion. Taken together, these results indicate that XPA interaction with both RPA32 and RPA70 is indispensable for NER reactions.  相似文献   

12.
The xeroderma pigmentosum group E gene product DDB2, a protein involved in nucleotide excision repair (NER), associates with the E3 ubiquitin ligase complex Cul4A-DDB1. But the precise role of these interactions in the NER activity of DDB2 is unclear. Several models, including DDB2-mediated ubiquitination of histones in UV-irradiated cells, have been proposed. But those models lack clear genetic evidence. Here we show that DDB2 participates in NER by regulating the cellular levels of p21Waf1/Cip1. We show that DDB2 enhances nuclear accumulation of DDB1, which binds to a modified form of p53 containing phosphorylation at Ser18 (p53S18P) and targets it for degradation in low-dose-UV-irradiated cells. DDB2−/− mouse embryonic fibroblasts (MEFs), unlike wild-type MEFs, are deficient in the proteolysis of p53S18P. Accumulation of p53S18P in DDB2−/− MEFs causes higher expression p21Waf1/Cip1. We show that the increased expression of p21Waf1/Cip1 is the cause NER deficiency in DDB2−/− cells because deletion or knockdown of p21Waf1/Cip1 reverses their NER-deficient phenotype. p21Waf1/Cip1 was shown to bind PCNA, which is required for both DNA replication and NER. Moreover, an increased level of p21Waf1/Cip1 was shown to inhibit NER both in vitro and in vivo. Our results provide genetic evidence linking the regulation of p21Waf1/Cip1 to the NER activity of DDB2.  相似文献   

13.
Nucleotide excision repair (NER) removes a wide variety of lesions from the genome and is deficient in the genetic disorder, xeroderma pigmentosum (XP). In this paper, an in vitro analysis of the XP group A gene product (XPA protein) is reported. Results of an analysis on the pathogenesis of ultraviolet (UV)-B-induced skin cancer in the XPA gene-knockout mouse are also described: (1) contrary to wild type mice, significant bias of p53 mutations to the transcribed strand and no evident p53 mutational hot spots were detected in the skin tumors of XPA-knockout mice. (2) Skin cancer cell lines from UVB-irradiated XPA-knockout mice had a decreased mismatch repair activity and an abnormal cell cycle checkpoint, suggesting that the downregulation of mismatch repair helps cells escape killing by UVB and that mismatch repair-deficient clones are selected for during the tumorigenic transformation of XPA (-/-) cells. (3) The XPA-knockout mice showed a higher frequency of UVB-induced mutation in the rpsL transgene at a low dose of UVB-irradiation than the wild type mice. CC-->TT tandem transition, a hallmark of UV-induced mutation, was detected at higher frequency in the rpsL transgene in the XPA-knockout mice than the wild type mice. This rpsL/XPA mouse system will be useful for further analysing the role of NER in the mutagenesis induced by various carcinogens. (4) The UVB-induced immunosuppression was greatly enhanced in the XPA-knockout mice. It is possible that an enhanced impairment of the immune system by UVB irradiation is involved in the high incidence of skin cancer in XP.  相似文献   

14.
The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimerspecific endonuclease V of bacteriophage T4. The results were consistent with the data reported by Mansbridge and Hanawalt (1983) and suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts we observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in transcribing regions of the genome.  相似文献   

15.
Xeroderma pigmentosum group C (XPC) protein initiates the DNA excision repair of helix‐distorting base lesions. To understand how this versatile subunit searches for aberrant sites within the vast background of normal genomic DNA, the real‐time redistribution of fluorescent fusion constructs was monitored after high‐resolution DNA damage induction. Bidirectional truncation analyses disclosed a surprisingly short recognition hotspot, comprising ~15% of human XPC, that includes two β‐hairpin domains with a preference for non‐hydrogen‐bonded bases in double‐stranded DNA. However, to detect damaged sites in living cells, these DNA‐attractive domains depend on the partially DNA‐repulsive action of an adjacent β‐turn extension that promotes the mobility of XPC molecules searching for lesions. The key function of this dynamic interaction surface is shown by a site‐directed charge inversion, which results in increased affinity for native DNA, retarded nuclear mobility and diminished repair efficiency. These studies reveal a two‐stage discrimination process, whereby XPC protein first deploys a dynamic sensor interface to rapidly interrogate the double helix, thus forming a transient recognition intermediate before the final installation of a more static repair‐initiating complex.  相似文献   

16.
17.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   

18.
Camenisch U  Dip R  Vitanescu M  Naegeli H 《DNA Repair》2007,6(12):1819-1828
The presumed DNA-binding cleft of xeroderma pigmentosum group A (XPA) protein, a key regulatory subunit of the eukaryotic nucleotide excision repair complex, displays a distinctive array of 6 positively charged amino acid side chains. Here, the molecular function of these closely spaced electropositive residues has been tested by systematic site-directed mutagenesis. After the introduction of single amino acid substitutions, the mutants were probed for protein-DNA interactions in electrophoretic mobility shift and photochemical crosslinking assays. This analysis led to the identification of a critical hot-spot for DNA substrate recognition composed of two neighboring lysines at codons 141 and 179 of the human XPA sequence. The replacement of other basic side chains in the DNA interaction domain conferred more moderate defects of substrate binding. When the function of XPA was tested as a fusion product with either mCherry or green-fluorescent protein, a glutamate substitution of one of the positively charged residues at positions 141 and 179 was sufficient to decrease DNA repair activity in human fibroblasts. Thus, the removal of a single cationic side chain abolished DNA-binding activity and significant excision repair defects could be induced by single charge inversions on the XPA surface, indicating that this molecular sensor participates in substrate recognition by monitoring the electrostatic potential of distorted DNA repair sites.  相似文献   

19.
Summary The distribution of spontaneous sister chromatid exchanges (SCEs) was studied in PHA-stimulated lymphocytes from 15 patients affected by xeroderma pigmentosum (XP). The study of unscheduled DNA synthesis (UDS) in twelve of these patients showed that seven were deficient and five proficient. The number of SCEs in XP patient cells was higher than in those of 19 controls, and the distributions of SCEs per cell were significantly different. However, the results varied when XP patients were considered in relation to their UDS: the group of XP patients with proficient UDS did not differ, whereas the group of XP patients with deficient UDS was very significantly different from controls. The group not tested for UDS was similar to the deficient UDS group. The possible relationship between the increase of SCEs and the type of DNA repair defect is discussed.  相似文献   

20.
Bunick CG  Miller MR  Fuller BE  Fanning E  Chazin WJ 《Biochemistry》2006,45(50):14965-14979
XPC is a 940-residue multidomain protein critical for the sensing of aberrant DNA and initiation of global genome nucleotide excision repair. The C-terminal portion of XPC (residues 492-940; XPC-C) has critical interactions with DNA, RAD23B, CETN2, and TFIIH, whereas functional roles have not yet been assigned to the N-terminal portion (residues 1-491; XPC-N). In order to analyze the molecular basis for XPC function and mutational defects associated with xeroderma pigmentosum (XP) disease, a series of stable bacterially expressed N- and C-terminal fragments were designed on the basis of sequence analysis and produced for biochemical characterization. Limited proteolysis experiments combined with mass spectrometry revealed that the full XPC-C is stable but XPC-N is not. However, a previously unrecognized folded helical structural domain was found within XPC-N, XPC(156-325). Pull-down and protease protection assays demonstrated that XPC(156-325) physically interacts with the DNA repair factor XPA, establishing the first functional role for XPC-N. XPC-C exhibits binding characteristics of the full-length protein, including stimulation of DNA binding by physical interaction with RAD23B and CETN2. Analysis of an XPC missense mutation (Trp690Ser) found in certain patients with XP disease revealed that this mutation is associated with a diminished ability to bind DNA. Evidence of contributions to protein interactions from regions in both XPC-N and XPC-C along with recently recognized homologies to yeast PNGase prompted construction of a structural model of a folded XPC core. This model offers key insights into how domains from the two portions of the protein may cooperate in generating specific XPC functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号