首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GroEL is a group I chaperonin that facilitates protein folding and prevents protein aggregation in the bacterial cytosol. Mycobacteria are unusual in encoding two or more copies of GroEL in their genome. While GroEL2 is essential for viability and likely functions as the general housekeeping chaperonin, GroEL1 is dispensable, but its structure and function remain unclear.Here, we present the 2.2-Å resolution crystal structure of a 23-kDa fragment of Mycobacterium tuberculosis GroEL1 consisting of an extended apical domain. Our X-ray structure of the GroEL1 apical domain closely resembles those of Escherichia coli GroEL and M. tuberculosis GroEL2, thus highlighting the remarkable structural conservation of bacterial chaperonins. Notably, in our structure, the proposed substrate-binding site of GroEL1 interacts with the N-terminal region of a symmetry-related neighboring GroEL1 molecule. The latter is consistent with the known GroEL apical domain function in substrate binding and is supported by results obtained from using peptide array technology. Taken together, these data show that the apical domains of M. tuberculosis GroEL paralogs are conserved in three-dimensional structure, suggesting that GroEL1, like GroEL2, is a chaperonin.  相似文献   

2.
The eubacterial chaperonins GroEL and GroES are essential chaperones and primarily assist protein folding in the cell. Although the molecular mechanism of the GroEL system has been examined previously, the mechanism by which GroEL and GroES assist folding of nascent polypeptides during translation is still poorly understood. We previously demonstrated a co-translational involvement of the Escherichia coli GroEL in folding of newly synthesized polypeptides using a reconstituted cell-free translation system (Ying, B. W., Taguchi, H., Kondo, M., and Ueda, T. (2005) J. Biol. Chem. 280, 12035-12040). Employing the same system here, we further characterized the mechanism by which GroEL assists folding of translated proteins via encapsulation into the GroEL-GroES cavity. The stable co-translational association between GroEL and the newly synthesized polypeptide is dependent on the length of the nascent chain. Furthermore, GroES is capable of interacting with the GroEL-nascent peptide-ribosome complex, and experiments using a single-ring variant of GroEL clearly indicate that GroES association occurs only at the trans-ring, not the cis-ring, of GroEL. GroEL holds the nascent chain on the ribosome in a polypeptide length-dependent manner and post-translationally encapsulates the polypeptide using the GroES cap to accomplish the chaperonin-mediated folding process.  相似文献   

3.
The chaperonin GroEL assists protein folding in the presence of ATP and magnesium through substrate protein capsulation in combination with the cofactor GroES. Recent studies have revealed the details of folding cycles of GroEL from Escherichia coli, yet little is known about the GroEL-assisted protein folding mechanisms in other bacterial species. Using three model enzyme assays, we have found that GroEL1 from Chlamydophila pneumoniae, an obligate human pathogen, has a broader selectivity for nucleotides in the refolding reaction. To elucidate structural factors involved in such nucleotide selectivity, GroEL chimeras were constructed by exchanging apical, intermediate, and equatorial domains between E. coli GroEL and C. pneumoniae GroEL1. In vitro folding assays using chimeras revealed that the intermediate domain is the major contributor to the nucleotide selectivity of C. pneumoniae GroEL1. Additional site-directed mutation experiments led to the identification of Gln(400) and Ile(404) in the intermediate domain of C. pneumoniae GroEL1 as residues that play a key role in defining the nucleotide selectivity of the protein refolding reaction.  相似文献   

4.
A double-heptamer ring chaperonin GroEL binds denatured substrate protein, ATP, and GroES to the same heptamer ring and encapsulates substrate into the central cavity underneath GroES where productive folding occurs. GroES is a disk-shaped heptamer, and each subunit has a GroEL-binding loop. The residues of the GroEL subunit responsible for GroES binding largely overlap those involved in substrate binding, and the mechanism by which GroES can replace the substrate when GroES binds to GroEL/substrate complex remains to be clarified. To address this question, we generated single polypeptide GroES by fusing seven subunits with various combinations of active and GroEL binding-defective subunits. Functional tests of the fused GroES variants indicated that four active GroES subunits were required for efficient formation of the stable GroEL/GroES complex and five subunits were required for the productive GroEL/substrate/GroES complex. An increase in the number of defective GroES subunits resulted in a slowing of encapsulation and folding. These results indicate the presence of an intermediate GroEL/substrate/GroES complex in which the substrate and GroES bind to GroEL by sharing seven common binding sites.  相似文献   

5.
Molecular chaperones are ATP‐consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all‐purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT‐19, which are ATP‐consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT‐19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL–GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild‐type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady‐state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.  相似文献   

6.
Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.  相似文献   

7.
It is difficult to obtain high-resolution structural information on the substrate-binding site of intact GroEL. But minichaperones, domains containing the peptide-binding site of GroEL, do constitute tractable systems for detailed studies. A peptide-binding site was located in crystals of a minichaperone and proposed to constitute a model for substrate-binding. We have now located the substrate binding site of the minichaperone GroEL(193-335) in solution by labelling it at various positions with a fluorescent probe and detecting which positions are perturbed on binding a denatured substrate. The fluorescence of a probe attached to a cysteine residue engineered at position 228 (N terminus of helix H8), 241 (helix H8), 261 (helix H9), or 267 (helix H9) was affected significantly by binding of substrate. But there was little change for a label at positions 193, 212, 217 or 293. The dissociation constants between substrates and minichaperone were evaluated from fluorescence anisotropy assays. The effects of salt and temperature were the same as those with intact GroEL. These results indicate that the region around helices H8 and H9 is the substrate-binding site for the apical domain fragment. Intriguingly, the same site is involved in the binding of GroES. Thus, an important function of GroES in the regulation of the activity of GroEL for substrates is to displace the bound substrate by competing for its binding site.  相似文献   

8.
Phage P22 wild-type (WT) coat protein does not require GroEL/S to fold but temperature-sensitive-folding (tsf) coat proteins need the chaperone complex for correct folding. WT coat protein and all variants absolutely require P22 scaffolding protein, an assembly chaperone, to assemble into precursor structures termed procapsids. Previously, we showed that a global suppressor (su) substitution, T1661, which rescues several tsf coat protein variants, functioned by inducing GroEL/S. This led to an increased formation of tsf:T1661 coat protein:GroEL complexes compared with the tsf parents. The increased concentration of complexes resulted in more assembly-competent coat proteins because of a shift in the chaperone-driven kinetic partitioning between aggregation-prone intermediates toward correct folding and assembly. We have now investigated the folding and assembly of coat protein variants that carry a different global su substitution, F170L. By monitoring levels of phage production in the presence of a dysfunctional GroEL we found that tsf:F170L proteins demonstrate a less stringent requirement for GroEL. Tsf:F170L proteins also did not cause induction of the chaperones. Circular dichroism and tryptophan fluorescence indicate that the native state of the tsf: F170L coat proteins is restored to WT-like values. In addition, native acrylamide gel electrophoresis shows a stabilized native state for tsf:F170L coat proteins. The F170L su substitution also increases procapsid production compared with their tsf parents. We propose that the F170L su substitution has a decreased requirement for the chaperones GroEL and GroES as a result of restoring the tsf coat proteins to a WT-like state. Our data also suggest that GroEL/S can be induced by increasing the population of unfolding intermediates.  相似文献   

9.
The chaperonin GroEL and the peptidyl-prolyl cis-trans isomerase cyclophilin are major representatives of two distinct cellular systems that help proteins to adopt their native three-dimensional structure: molecular chaperones and folding catalysts. Little is known about whether and how these proteins cooperate in protein folding. In this study, we have examined the action of GroEL and cyclophilin on a substrate protein in two distinct prolyl isomerization states. Our results indicate that: (i) GroEL binds the same substrate in different prolyl isomerization states. (ii) GroEL-ES does not promote prolyl isomerizations, but even retards isomerizations. (iii) Cyclophilin cannot promote the correct isomerization of prolyl bonds of a GroEL-bound substrate, but acts sequentially after release of the substrate from GroEL. (iv) A denatured substrate with all-native prolyl bonds is delayed in folding by cyclophilin due to isomerization to non-native prolyl bonds; a substrate that has proceeded in folding beyond a stage where it can be bound by GroEL is still sensitive to cyclophilin. (v) If a denatured cyclophilin-sensitive substrate is first bound to GroEL, however, productive folding to a cyclophilin-resistant form can be promoted, even without GroES. We conclude that GroEL and cyclophilin act sequentially and exert complementary functions in protein folding.  相似文献   

10.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.  相似文献   

12.
The chaperonin system, GroEL and GroES of Escherichia coli enable certain proteins to fold under conditions when spontaneous folding is prohibitively slow as to compete with other non-productive channels such as aggregation. We investigated the plausible mechanisms of GroEL-mediated folding using simple lattice models. In particular, we have investigated protein folding in a confined environment, such as those offered by the GroEL, to decipher whether rate and yield enhancement can occur when the substrate protein is allowed to fold within the cavity of the chaperonins. The GroEL cavity is modeled as a cubic box and a simple bead model is used to represent the substrate chain. We consider three distinct characteristic of the confining environment. First, the cavity is taken to be a passive Anfinsen cage in which the walls merely reduce the available conformation space. We find that at temperatures when the native conformation is stable, the folding rate is retarded in the Anfinsen cage. We then assumed that the interior of the wall is hydrophobic. In this case the folding times exhibit a complex behavior. When the strength of the interaction between the polypeptide chain and the cavity is too strong or too weak we find that the rates of folding are retarded compared to spontaneous folding. There is an optimum range of the interaction strength that enhances the rates. Thus, above this value there is an inverse correlation between the folding rates and the strength of the substrate-cavity interactions. The optimal hydrophobic walls essentially pull the kinetically trapped states which leads to a smoother the energy landscape. It is known that upon addition of ATP and GroES the interior cavity of GroEL offers a hydrophilic-like environment to the substrate protein. In order to mimic this within the context of the dynamic Anfinsen cage model, we allow for changes in the hydrophobicity of the walls of the cavity. The duration for which the walls remain hydrophobic during one cycle of ATP hydrolysis is allowed to vary. These calculations show that frequent cycling of the wall hydrophobicity can dramatically reduce the folding times and increase the yield as well under non-permissive conditions. Examination of the structures of the substrate proteins before and after the change in hydrophobicity indicates that there is global unfolding involved. In addition, it is found that a fraction of the molecules kinetically partition to the native state in accordabce with the iterative annealing mechanism. Thus, frequent "unfoldase" activity of chaperonins leading to global unfolding of the polypeptide chain results in enhancement of the folding rates and yield of the folded protein. We suggest that chaperonin efficiency can be greatly enhanced if the cycling time is reduced. The calculations are used to interpret a few experiments on chaperonin-mediated protein folding.  相似文献   

13.
GroEL recognizes proteins that are folding improperly or that have aggregation-prone intermediates. Here we have used as substrates for GroEL, wildtype (WT) coat protein of phage P22 and 3 coat proteins that carry single amino acid substitutions leading to a temperature-sensitive folding (tsf) phenotype. In vivo, WT coat protein does not require GroEL for proper folding, whereas GroEL is necessary for the folding of the tsf coat proteins; thus, the single amino acid substitutions cause coat protein to become a substrate for GroEL. The conformation of WT and tsf coat proteins when in a binary complex with GroEL was investigated using tryptophan fluorescence, quenching of fluorescence, and accessibility of the coat proteins to proteolysis. WT coat protein and the tsf coat protein mutants were each found to be in a different conformation when bound to GroEL. As an additional measure of the changes in the bound conformation, the affinity of binding of WT and tsf coat proteins to GroEL was determined using a fluorescence binding assay. The tsf coat proteins were bound more tightly by GroEL than WT coat protein. Therefore, even though the proteins are identical except for a single amino acid substitution, GroEL did not bind these substrate polypeptides in the same conformation within its central cavity. Therefore, GroEL is likely to bind coat protein in a conformation consistent with a late folding intermediate, with substantial secondary and tertiary structure formed.  相似文献   

14.
GroEL assists protein folding by preventing the interaction of partially folded molecules with other non-native proteins. It binds them, sequesters them, and then releases them so that they can fold in an ATP-driven cycle. Previous studies have also shown that protein substrates, GroES, and oligopeptides bind to partially overlapped sites on the apical domain surfaces of GroEL. In this study, we have determined the crystal structure at 3.0A resolution of a symmetric (GroEL-peptide)(14) complex. The binding of each of these small 12 amino acid residue peptides to GroEL involves interactions between three adjacent apical domains of GroEL. Each peptide interacts primarily with a single GroEL subunit. Residues R231 and R268 from adjacent subunits isolate each substrate-binding pocket, and prevent bound substrates from sliding into adjacent binding pockets. As a consequence of peptide binding, domains rotate and inter-domain interactions are greatly enhanced. The direction of rotation of the apical domain of each GroEL subunit is opposite to that of its intermediate domain. Viewed from outside, the apical domains rotate clockwise within one GroEL ring, while the ATP-induced apical domain rotation is counter-clockwise.  相似文献   

15.
To understand the mechanism of GroEL-assisted protein folding, we observed the interaction of fluorescence-labeled GroEL with fluorescence-labeled substrate proteins at the single molecule level by total internal reflection fluorescence microscopy. GroEL with a A133C mutation in the equatorial domain was labeled with a fluorescent dye, tetramethylrhodamine. As substrate proteins, we used the largely denatured and partly denatured forms of bovine beta-lactoglobulin, both labeled with another fluorescent dye, Cy5. The complexes formed by GroEL with these substrates were characterized by size-exclusion gel chromatography. The recovered complexes were then observed by fluorescence microscopy. For both substrates, agreement of the fluorescent spots for tetramethylrhodamine and Cy5 indicated formation of the complex at the single molecule level. Similar observation of macroscopic binding by size-exclusion chromatography and microscopic binding by the fluorescence microscopy was done for the folding intermediate of Cy5-labeled bovine rhodanese. The fluorescence microscopy opens a new avenue for studying the interaction of GroEL with substrate proteins.  相似文献   

16.
Kinetic analyses of GroE-assisted folding provide a dynamic sequence of molecular events that underlie chaperonin function. We used stopped-flow analysis of various fluorescent GroEL mutants to obtain details regarding the sequence of events that transpire immediately after ATP binding to GroEL and GroEL with prebound unfolded proteins. Characterization of GroEL CP86, a circularly permuted GroEL with the polypeptide ends relocated to the vicinity of the ATP binding site, showed that GroES binding and protection of unfolded protein from solution is achieved surprisingly early in the functional cycle, and in spite of greatly reduced apical domain movement. Analysis of fluorescent GroEL SR-1 and GroEL D398A variants suggested that among other factors, the presence of two GroEL rings and a specific conformational rearrangement of Helix M in GroEL contribute significantly to the rapid release of unfolded protein from the GroEL apical domain.  相似文献   

17.
The chaperonin GroEL is a megadalton-sized molecular machine that plays an essential role in the bacterial cell assisting protein folding to the native state through actions requiring ATP binding and hydrolysis. A combination of medicinal chemistry and genetics has been employed to generate an orthogonal pair, a small molecule that selectively inhibits ATPase activity of a GroEL ATP-binding pocket variant. An initial screen of kinase-directed inhibitors identified an active pyrazolo-pyrimidine scaffold that was iteratively modified and screened against a collective of GroEL nucleotide pocket variants to identify a cyclopentyl carboxamide derivative, EC3016, that specifically inhibits ATPase activity and protein folding by the GroEL mutant, I493C, involving a side chain positioned near the base of ATP. This orthogonal pair will enable in vitro studies of the action of ATP in triggering activation of GroEL-mediated protein folding and might enable further studies of GroEL action in vivo. The approach originated for studying kinases by Shokat and his colleagues may thus also be used to study large macromolecular machines.  相似文献   

18.
GroEL is an essential Escherichia coli molecular chaperon that uses ATP to facilitate correct folding of a range of proteins in a cell. Central to the GroEL substrate diversity is how GroEL recognizes the substrates. The interaction between GroEL and substrate has been proposed to be largely hydrophobic because GroEL interacts with proteins in non-native conformations but not in native forms. Analysis of GroEL substrate proteins reveals that one of its main substrates are proteins with αβ folding domains, suggesting that GroEL may stabilize the collapsed αβ core by binding to hydrophobic surfaces that are usually buried between the α and β elements. In this study, we characterize the interaction between GroEL and a peptide derived from our previous selection via a phage display method. NMR studies map the peptide-binding site to the region containing Helices H and I, which is consistent with evidence that this region comprises the primary substrate-binding site. The peptide is largely unstructured in solution but adopts a helical conformation when bound to the GroEL apical domain with a moderate affinity (Kd = 17.1 ± 2.5 μm). The helical conformation aligns residues to form an amphipathic structure, and the hydrophobic side of this amphipathic helix interacts with GroEL as suggested by fluorescence quenching studies. Together with previous structural studies on the GroEL-peptide complexes, our work supports the notion that the amphipathic secondary elements in the substrate proteins may be the structural motif recognized by GroEL.The bacterial chaperonin GroEL and its co-chaperonin GroES are essential for cell viability by assisting folding of a wide range of proteins via an ATP-dependent mechanism (13). Structurally, fourteen 57-kDa GroEL subunits assemble into two back-to-back stacking heptameric rings, giving rise to two functionally independent central cavities (4). Each GroEL subunit folds into three distinctive domains: equatorial domain, intermediate domain, and apical domain. The equatorial domains contain the ATP-binding sites and provide most of the intra-ring interactions and all the inter-ring interactions. The apical domains form the rims of the central cavities and contain the binding sites for the substrate proteins and GroES. The intermediate domains link the apical domains and the equatorial domains. For the co-chaperonin GroES, seven GroES subunits, of 10 kDa each, assemble into a heptamer ring (5, 6). In forming the GroEL-GroES complex, GroES caps one end of GroEL, and large structural changes are observed in both GroEL and GroES (7). In GroEL, the apical domain is rotated 90° along its axis and 60° upwards, and the intermediate domain is closed down ∼25° to the equatorial domain. A loop in GroES (residues 17–33) that is unstructured in the isolated GroES adopts a β-turn structure and forms contact with the GroEL apical domain. Compared with the unliganded GroEL, the volume of the enclosed GroEL-GroES cavity is doubled, and the surface lining the wall of the GroEL cavity changes from hydrophobic to hydrophilic.A wealth of information derived from both intensive biochemical and structural characterizations has revealed a general role of GroEL-GroES in assisting protein folding (see reviews in Refs. 3, 8, and 9). Briefly, GroEL binds the substrate proteins in their aggregation-prone non-native states, preventing them from aggregating. Binding of ATP to the substrate occupied GroEL ring (cis-ring) presumably induces large conformational change in GroEL that promotes binding of GroES to the cis-ring. As a result of ATP and GroES binding, the substrate protein is displaced into the GroEL central cavity, initiating the folding process. Both hydrolysis of ATP in the cis-ring and binding of ATP to the substrate unoccupied ring (trans ring) weaken the GroES-GroEL interaction, and ATP binding to the trans ring results in the dissociation of GroES from GroEL, releasing substrate from the central cavity of GroEL. The released substrate may continue folding into the native state if in a folding competent state or may rebind to GroEL if it is still misfolded.One of the most intriguing aspects of the GroE-assisted folding is the substrate promiscuity. It has been shown that about 300 Escherichia coli proteins can interact with GroEL, and these proteins are diverse in terms of both structures and functions (10). A range of techniques have been applied to investigate this important yet complex aspect, and salient features regarding GroEL-substrate interactions have emerged. The apical domains, on the rim of the GroEL central cavity, contain the main substrate-binding site (1113). Structural flexibility, reflected by both high temperature factors of the apical domain in the crystal structure of tetradecameric GroEL (14) and conformational multiplicity around Helix H and I (15), is proposed to account for the diverse spectrum of GroEL substrates. Mutational studies on GroEL suggest that the GroEL-substrate interactions are largely hydrophobic (16). Structural study on GroEL-substrate interaction, however, is hindered mainly because of the multiple conformations of the bound substrate protein. Very recently, NMR techniques have been used to directly investigate the bound conformations of the substrate (17, 18); yet the nature of GroEL-substrate interaction is not revealed. Peptides may mimic segments of substrate proteins, and studies of GroEL-peptide interactions have uncovered detailed intermolecular interactions and provided insights into principles of substrate recognition by GroEL. The bound peptides may adopt α-helix (1923), β-hairpin (15), or extended conformations (24), and despite different conformations, they all appear to bind to Helix H and I of GroEL. Hydrophobic interaction dominates the interface between GroEL and peptides in either β-hairpin or extended structures and is proposed so between GroEL and α-helical peptides. These detailed structural characterizations on GroEL-peptide interactions have contributed to dissecting the complex nature of the substrate recognition by GroEL (25).We previously identified a high affinity peptide (strong binding peptide (SBP))2 for GroEL using a phage display method and found that SBP adopts a β-hairpin structure bound to GroEL (15, 26). To investigate the contribution of the β-turn in SBP to the GroEL-SBP interaction, we have created various SBP variants with the intension to disrupt the β-turn structure and have studied their binding to GroEL. One of the peptides (termed SBP-W2DP6V), however, adopts a helical conformation when bound to GroEL by NMR analysis. NMR results also map the peptide-binding site on GroEL to be a region formed by Helix H and I. The helical peptide has an amphipathic feature, and fluorescence studies provide direct evidence that the hydrophobic face is involved in the interaction with GroEL. Our structural analysis, combined with previous studies, suggests that GroEL recognizes the amphipathic property in the secondary structures of the substrate protein and binds preferably to the hydrophobic side of these structural elements to stabilize and preserve their structures.  相似文献   

19.
The clone corresponding to maize plastidic protoporphyrinogen IX oxidase (PPO) has been isolated by functional complementation and inserted into a pET16b vector for expression in Escherichia coli. Recombinant PPO was purified by standard affinity chromatography using a metal chelating resin. Two contaminants copurified with recombinant PPO and were identified as GroEL and DnaK. Since chaperone binding to hydrophobic regions of the protein is regulated by ATP availability, an ATP washing step was introduced prior to elution of the recombinant protein from an affinity column. This washing step selectively removed both chaperones and allowed the recovery of pure PPO. Coexpression of PPO and GroELS resulted in a sixfold increase of soluble PPO yield, suggesting that bacterial chaperones could be limiting during the folding of the heterologous protein. However, a portion of PPO was still found in the insoluble fraction. Buffer containing the GroEL and DnaK enabled resuspension of PPO from the insoluble fraction but failed to enhance refolding of the denaturated protein. Attempts to increase the amount of soluble PPO using a thioredoxin-PPO fusion protein were not successful. Initial characterization of the recombinant PPO found that it possessed a high V(max), an elevated affinity for substrate, and an elevated sensitivity to PPO inhibitor herbicides compared to previous reports.  相似文献   

20.
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate FRET, and the initial kinetics of GroEL ATPase activity. We conclude that the cycle consists of two successive timers of approximately 3 s and approximately 5 s duration. During the first timer, GroEL is bound to ATP, substrate protein, and GroES. When the first timer ends, the substrate protein is released into the central cavity and folding begins. ATP hydrolysis and phosphate release immediately follow this transition. ADP, GroES, and substrate depart GroEL after the second timer is complete. This mechanism explains how GroES binding to a GroEL-substrate complex encapsulates the substrate rather than allowing it to escape into solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号