首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The identification of molecular markers linked to economically important traits for use in crop improvement is very important in long-lived perennial species. Three-hundred-and-sixty RAPD primers were used with bulked segregant analysis to identify markers linked to loci of specific interest in peach [(Prunus persica) L. Batch] and peach x almond [(Prunus dulcis) Batch] crosses. The traits analyzed included flesh color, adhesion, and texture; pollen fertility; plant stature; and three isozyme loci. The Mendelian behavior of the RAPD loci was established, and RAPD markers were mapped relative to the loci controlling flesh color, adhesion, and texture, and the isozyme loci Mdh-1, 6Pgd-2 and Aat-1, as well as the existing RFLP genetic linkage map constructed previously using a peach x almond F2 population. This technique has facilitated rapid identification of RAPD and RFLP markers that are linked to the traits under study. Loci controlling these traits mapped predominantly to linkage groups 2 and 3 of the peach genetic linkage map. Linkages to genes with both dominant and co-dominant alleles were identified, but linkages to dominant genes were more difficult to find. In several crosses, RAPD marker bands proved to be allelic. One co-dominant RAPD formed a heteroduplex band in heterozygous individuals and in mixtures of alternate homozygotes. The Mendelian behavior of the RAPD loci studied was established and the results suggest that RAPD markers will be useful for plant improvement in peach.  相似文献   

2.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

3.
The pendula phenotype of Norway spruce [Picea abies (L.) Karst f. pendula] is characterized by narrow crowns and strong apical dominance and is controlled by a single dominant gene (P). This defined genetic control presents one of the few opportunities to map a single gene controlling a morphological trait in a forest tree. We used random amplified polymorphic DNA (RAPD) markers and bulked segregant analysis to identify one locus OPH10_720, linked to the pendula gene. The estimated recombination frequency (r) between OPH10_720 and P was 0.046 (SE r =0.032). Mapping of the pendula gene is an important first step towards the ultimate identification and cloning of this gene.  相似文献   

4.
RAPD primers were identified as giving parent-specific bands when screened with a set of introgression lines containing introgressed regions of Lycopersicon pennellii that encompass 5 quantitative trait loci affiliated with the production and composition of acylsugars, compounds associated with insect resistance. Primers giving L. pennellii introgression specific bands were zonally mapped to identify bands affiliated with the quantitative trait target and flanking regions using subsets of 7 to 16 F2 individuals which contained small overlapping segments (zones) of the L. pennellii genome spanning those regions. Seventeen RAPD primers, agt-related primers, and an agt clone were then used in mapping the complete F2 population of 144 individuals. This work resulted in the identification of RAPD markers for three of the 5 quantitative trait loci and the construction of an integrated RAPD/RFLP genomic map for tomato (Lycopersicon esculentum x L. pennellii LA716) of 111 RAPD and 8 acylglucose transferase related markers added to a framework map of 150 RFLP markers.  相似文献   

5.
 Foliar resistance to Ascochyta lentis is controlled at a single major locus by a dominant gene (AbR 1 ) in the lentil accession ILL5588 (cv ‘Northfield’). Flanking RAPD markers that are closely linked to the resistance locus in coupling phase were identified by bulked segregant analysis. Out of 261 decanucleotide primers screened 7 produced a polymorphic marker that segregated with the resistance locus, and all markers were found to exist within a single linkage group. Five of the seven RAPD markers were within 30 cM of the resistance locus. Log likelihood analysis for detecting QTL associated with the foliar resistance revealed that a single narrow peak accounted for almost 90% of the variance of resistance between the bulks. Preliminary mapping in an F3 population revealed that the closest flanking markers were approximately 6 and 14 centiMorgans (cM) away from the resistance locus. These markers should be useful for the discrimination of resistant germplasm through marker-assisted selection in future breeding programmes and represent the first essential step towards the map-based cloning of this resistance gene. Received: 18 December 1997 / Accepted: 9 June 1998  相似文献   

6.
Linkage of RAPD markers to a single dominant gene for resistance to pine needle gall midge was investigated in Japanese black pine (Pinus thunbergii). Three primers that generated linked markers were found after 1160 primers were screened by bulked segregant analysis. The distances between the resistance gene, R, and the marker genes OPC06580, OPD01700, and OPAX192100 were 5.1 cM, 6.7 cM and 13.6 cM, respectively. OPC06580 was in coupling phase to R, whereas OPD01700 and OPAX192100 were in repulsion phase to R. A linkage map for a resistant tree was constructed using 96 macrogametophytes. In linkage analysis, 98 out of 127 polymorphic markers were assigned to 17 linkage groups and six linked pairs. The total length of this map was 1469.8 cM, with an average marker density of 15.6 cM. The genome length was estimated to be 2138.3 cM, and the derived linkage map covered 67.5% of the genome. Although the linked markers OPC06580, OPAX192100, and OPD01700, belonged to the same linkage group, no precise positions were found for OPC06580 or OPD01700. Received: 15 May 1999 / Accepted: 29 July 1999  相似文献   

7.
An F2 population from a cross between barley accession Q21861 and the Australian barley variety Galleon was used to develop RAPD markers for resistance to barley leaf rust (Puccinia hordei). Resistant and susceptible DNA bulks were constructed following the classification of F2 plants by leaf rust infection type. Bulked segregant analysis was then used to identify a 2.7-kb marker, designated OU022700 and located approximately 12cM from RphQ, a leaf rust resistance gene in Q21861. The marker was generated by PCR with the oligonucleotide primer OPU-02 (Operon). Infection types of F3 progeny were used to confirm assignment of F2 genotypes. OU022700 was shown, retrospectively, to be useful in the identification of individual F2 plants that had been originally misclassified as having susceptible infection types. Both the RAPD marker and RphQ will be potentially useful in the development of new barley cultivars.  相似文献   

8.
 Needle-to-stem unit rate (NESTUR) is a stem growth index of conifer seedlings that measures the efficiency of stemwood production per unit of foliage growth. The random amplified polymorphic DNA (RAPD) technique was applied to haploid DNA from the megagametophytes of a full-sib radiata pine cross to find markers linked to factors controlling the NESTUR trait. Using the bulked segregant analysis approach, 23 of 933 primers displayed putative linkage to factors controlling NESTUR. Based on the genotypic analysis of 174 individuals, two quantitative trait loci (QTLs) controlling NESTUR were identified at ANOVA P-levels of 0.01–0.001. The QTLs were identified by RAPD markers OPE-06450 and OPA-101200, which were linked to each other (r=7%), and UBC-333550, which was not linked to the other two. Linkage to components of NESTUR (increments in stem diameter and stem volume) was demonstrated for UBC-333550, while the others were not linked to NESTUR components. Received: 18 December 1996/Accepted: 24 January 1997  相似文献   

9.
Bulked segregant analysis was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the restorer gene (Rfo) used in theOgura radish cytoplasmic male sterility of rapeseed. A total of 138 arbitrary 10-mer oligonucleotide primers were screened on the DNA of three pairs of bulks, each bulk corresponding to homozygous restored and male sterile plants of three segregating populations. Six primers produced repeatable polymorphisms between paired bulks. DNA from individual plants of each bulk was then used as a template for amplification with these six primers. DNA polymorphisms generated by four of these primers were found to be completely linked to the restorer gene with the polymorphic DNA fragments being associated either with the fertility restorer allele or with the sterility maintainer allele. Pairwise cross-hybridization demonstrated that the four polymorphic DNA fragments did not share any homology. Southern hybridization of labelled RAPD fragments on digested genomic DNA from the same three pairs of bulks revealed fragments specific to either the male sterile bulks or to the restored bulks and a few fragments common to all bulks, indicating that the amplified sequences are low copy. The four RAPD fragments that were completely linked to the restorer locus have been cloned and sequenced to develop sequence characterized amplified regions (SCARs). This will facilitate the construction of restorer lines used in breeding programs and is the first step towards map-based cloning of the fertility restorer allele.  相似文献   

10.
 Random amplified polymorphic DNA (RAPD) markers linked to two morphological markers ( fa and det), three ramosus genes (rms2, rms3 and rms4) and two genes conferring flowering response to photoperiod in pea (sn, dne) were selected by bulk segregant analysis on F2 populations. Two RAPD fragments were cloned and sequenced to generate the two SCAR markers V20 and S2 which are linked to rms3 and dne, respectively. All these genes, except rms2, were previously located on the pea classical linkage map. Rms2 mapped to linkage group IB which contains the afila gene. Precise genetic maps of the regions containing the genes were obtained and compared to the RAPD map generated from the recombinant inbred-lines population of the cross Térèse×K586. This cross was chosen because several mutants were obtained from cultivars Térèse and Torsdag (K586 was derived from Torsdag). This collection of isogenic lines was used for the construction of F2 mapping populations in which polymorphic RAPD markers were already known and mapped. Moreover, the well-known problem in pea of variability in the linkage associations between crosses was avoided. This work contributes to the precise integration between the classical map and the molecular maps existing in pea. Received: 13 March 1998 / Accepted: 29 April 1998  相似文献   

11.
The recent development of the industrial use of rapeseed oil rich in erucic acid has led to increased interest in the improvement of the high-erucic-acid (50–60%) varieties and to research towards genotypes containing a very high erucic acid content. This trait is controlled by two genes with additive effects. The low-erucic-acid trait was relatively easily introduced through backcrosses into various backgrounds because the zero-erucic-acid homozygotes were clearly identified in the segregating populations. To select for high erucic acid level is more difficult because of the partial overlap of the high-erucic-acid homozygous class and the intermediate one, containing heterozygotes. In order to help conventional breeding, RAPD markers were used to map the two genes involved in determining the erucic acid content in a doubled haploid progeny derived from a low x high erucic acid F1 hybrid. The two genes were successfully localized in two independent linkage group, through a QTL approach. A close association was found between individual plant genotypes and the erucic acid content of the doubled haploid progeny, and it was shown that the two genes do not contribute uniformly to the C22:1 level. The value of molecular gene mapping of such a trait in a conventional breeding programme is discussed.Abbreviations BSA bulked segregant analysis - DH doubled haploid - NIL near-isogenic lines - QTL quantitative trait locus - C22:1 erucic acid - TAG triacyl glycerol - SCAR sequence characterized amplified region  相似文献   

12.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

13.
Recent advances in the application of the polymerase chain reaction make it possible to score individuals at a large number of loci. The RAPD (random amplified polymorphic DNA) method is one such technique that has attracted widespread interest. The analysis of population structure with RAPD data is hampered by the lack of complete genotypic information resulting from dominance, since this enhances the sampling variance associated with single loci as well as induces bias in parameter estimation. We present estimators for several population-genetic parameters (gene and genotype frequencies, within- and between-population heterozygosities, degree of inbreeding and population subdivision, and degree of individual relatedness) along with expressions for their sampling variances. Although completely unbiased estimators do not appear to be possible with RAPDs, several steps are suggested that will insure that the bias in parameter estimates is negligible. To achieve the same degree of statistical power, on the order of 2 to 10 times more individuals need to be sampled per locus when dominant markers are relied upon, as compared to codominant (RFLP, isozyme) markers. Moreover, to avoid bias in parameter estimation, the marker alleles for most of these loci should be in relatively low frequency. Due to the need for pruning loci with low-frequency null alleles, more loci also need to be sampled with RAPDs than with more conventional markers, and some problems of bias cannot be completely eliminated.  相似文献   

14.
Nine different F2 families of peach [Prunus persica (L.) Batsch] were analyzed for linkage relationships between 14 morphological and two isozyme loci. Linkage was detected between weeping (We) and white flower (W), 33 cM; double flower (Dl) and pillar (Br), 10 cM; and flesh color (Y) and malate dehydrogenase (Mdh1), 26 cM. A leaf variant phenotypically distinct from the previously reported wavy-leaf (Wa) mutant in peach was found in progeny of Davie II. The new willow-leaf character (designated Wa2) was closely linked (0.4 cM) to a new dwarf phenotype (designated Dw3). Two families derived from the pollen-fertile cultivar White Glory segregated for pollen sterility, but segregation did not follow a 31 ratio. Evidence is presented suggesting that White Glory possesses a pollen-sterility gene (designated Ps2) that is non-allelic to the previously reported pollen-sterility gene (Ps) in peach. Ps2 was linked to both weeping (We-Ps2, 15.5 cM) and white flower (Ps2-W, 25.3 cM). A genomic map of peach containing 83 RAPD, one isozyme, and four morphological markers was generated using an F2 family obtained by selfing an NC174RL x Pillar F1. A total of 83 RAPD markers were assigned to 15 linkage groups. Various RAPD markers were linked to morphological traits. Bulked segregant analysis was used to identify RAPD markers flanking the red-leaf (Gr) and Mdh1 loci in the NC174RL x Pillar and Marsun x White Glory F2 families, respectively. Three markers flanking Mdh1 and ten markers flanking Gr were identified. The combination of RAPD markers and bulked segregant analysis provides an efficient method of identifying markers flanking traits of interest. Markers linked to traits that can only be scored late in development are potentially useful for marker-aided selection in trees. Alternatives for obtaining additional map order information for repulsion-phase markers in large F2 populations are proposed.This work was supported in part by the McKnight Foundation, North Carolina Biotechnology Center, North Carolina State University Forest Biotechnology Research Consortium, and the North Carolina Agricultural Research Service, Raleigh, North Carolina  相似文献   

15.
 In tomato, Bulked Segregant Analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to a quantitative trait locus (QTL) involved in the resistance to the Tomato Yellow Leaf Curl Virus. F4 lines were distributed into two pools, each consisting of the most resistant and of the most susceptible individuals, respectively. Both pools were screened using 600 random primers. Four RAPD markers were found to be linked to a QTL responsible for up to 27.7% of the resistance. These markers, localized in the same linkage group within a distance of 17.3 cM, were mapped to chromosome 6 on the tomato RFLP map. Received: 21 August 1996 / Accepted: 4 April 1997  相似文献   

16.
 Random amplified polymorphic DNA (RAPD) markers were identified for self-incompatibility (SI) alleles that will allow marker-assisted selection of desired S-alleles in hazelnut (Corylus avellana L.). DNA was extracted from young leaves collected from field-planted parents and 26 progeny of the cross OSU 23.017 (S1S12)×VR6-28 (S2S26) (OSU23×VR6). Screening of 10-base oligonucleotide RAPD primers was performed using bulked segregant analysis. DNA samples from 6 trees each were pooled into four ‘bulks’, one for each of the following: S1 S2, S1 S26 , S2 S12, and S12 S26. ‘Super bulks’ of 12 trees each for S1, S2, S12, and S26 were then created for each allele by combining the appropriate bulks. The DNA from these four super bulks and from the parents was used as a template in the PCR assays. A total of 250 primers were screened, and one RAPD marker each was identified for alleles S2 (OPI07750) and S1 (OPJ141700). OPJ141700 was identified in 13 of 14 S1 individuals of the cross OSU23×VR6 used in bulking and yielded a false positive in 1 non-S1 individual. This same marker was not effective outside the original cross, identifying 4 of 5 S1 progeny in another cross, ‘Willamette’×VR6-28 (‘Will’×VR6), but yielded false positives in 4 of 9 non-S1 individuals from the cross ‘Casina’×VR6-28 (‘Cas’×VR6). OPI07750 served as an excellent marker for the S2 allele and was linked closely to this allele, identifying 12 of 13 S2 individuals in the OSU23×VR6 population with no false positives. OPI07750 was found in 4 of 4 S2 individuals from ‘Will’×VR and 7 of 7 S2 individuals of ‘Cas’×VR6 with no false positives, as well as 10 of 10 S2 individuals of the cross OSU 296.082 (S1S8)×VR8-32 (S2S26), with only 1 false positive individual out of 21 progeny. OPI07750 was also present in 5 of 5 cultivars carrying the S2 allele, with no false-positive bands in non-S2 cultivars, and correctly identified all but 2 S2 individuals in 57 additional selections in the breeding program. In the OSU23×VR6 population, the recombination rate between the marker OPJ141700 and the S1 allele was 7.6% and between the OPI07750 marker and the S2 allele was 3.8%. RAPD marker bands were excised from gels, cloned, and sequenced to enable the production of longer primers (18 or 24 bp) that were used to obtain sequence characterized amplified regions (SCARs). Both the S1 and S2 markers were successfully cloned and 18 bp primers yielded the sole OPJ141700 product, while 24-bp primers yielded OPI07750 as well as an additional smaller product (700 bp) that was not polymorphic but was present in all of the S-genotypes examined. Received: 10 January 1998 / Accepted: 26 January 1998  相似文献   

17.
Tetraploid Paspalum notatum (bahiagrass) is a valuable forage grass with aposporous apomictic reproduction. In a previous study, we showed that apospory in bahiagrass is under the control of a single dominant gene with a distorted segregation ratio. The objective of this work was to identify molecular markers linked to apospory in tetraploid P. notatum and establish a preliminary syntenic relationship with the genomic region associated with apospory in P. simplex. A F1 population of 290 individuals, segregating for apospory, was generated after crossing a completely sexual plant (Q4188) with a natural aposporous apomictic plant (Q4117). The whole progeny was classified as sexual or aposporous by embryo sacs analysis. A bulked segregant analysis was carried out to identify molecular markers co-segregating with apospory. Four hundred RAPD primers, 30 AFLP primers combinations and 85 RFLP clones were screened using DNA from both parental genotypes and aposporous and sexual bulks. Linkage analysis was performed with cytological and genetic information from the complete progeny. Cytoembryological analysis showed 219 sexual and 71 aposporous F1 individuals. Seven different molecular markers (2 RAPD, 4 AFLP and 1 RFLP) were found to be completely linked to apospory. The RFLP probe C1069, mapping to the telomeric region of the long arm of rice chromosome 12, was one of the molecular markers completely linked to apospory in P. notatum. This marker had been previously associated with apospory in P. simplex. A preliminary map of the chromosome region carrying the apospory locus was constructed.  相似文献   

18.
Application of marker-assisted selection with RFLP based markers has been constrained by high cost and time requirements in situations involving a large number of plants. RFLP markers mapped on a Harrington/TR306 population have been identified elsewhere as linked to quantitative trait loci (QTL) governing malting quality. The probes ABG610, ABC622, as well as probes for the Nar1, Amy1 and Nar7 were sequenced and locus specific primers developed. These locus specific primers were applied to genomic DNA from both Harrington and TR306. Sequence analysis of the resultant monomorphic fragments revealed sequence divergence for the Xabg610, Xabc622, Amy1 and Nar1 loci, but not for the Nar7 locus. Application of a set of Hor2 primers to genomic DNA from the barley lines Harrington and TR306 led to the direct amplification of codominant alleles. Allele-specific primers were designed based on the sequence divergence identified among the Xabg610, Xabc622 and Nar1 alleles. Amplification conditions were optimized for each of these alleles such that only the favourable allele from Harrington was amplified. The usefulness of these primers for selecting Harrington alleles was demonstrated by their failure to amplify the corresponding alleles from the lines, Sterling, Stella and WM872. The Amy1 allele-specific amplicon was only capable of differentiating this locus between Harrington and TR306. The conversion of these markers into PCR amplifiable, allele-specific amplicons would greatly facilitate their application to barley breeding programs.  相似文献   

19.
Agaricus bisporus is an edible basidiomycete cultivated industrially for food production. Different spawn and mushroom producers use genetically related A. bisporus strains frequently marketed as different products. In this paper we show that the use of suitable molecular markers reveals the high level of genetic homology of commercial strains of A. bisporus, and allows, at the same time, to distinguish between them. In the course of this work, a molecular marker potentially linked to the agronomic character 'mushroom weight' has been identified by bulked segregant analysis.  相似文献   

20.
DNA markers tightly linked to a target gene are essential starting points for positional cloning. We combined ”differential display of mRNA” and ”bulked segregant analysis” in order to detect and clone ten expressed sequences as markers linked to a virus resistance gene in Phaseolus vulgaris. The combination of these two procedures could be used in lieu of positional cloning, provided polymorphisms detectable by differential display exist in the target gene. Isolation of expressed sequences from specific chromosome regions can also be accomplished by combining these procedures. Received: 8 July 1999 / Accepted: 21 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号