首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding a cowpea trypsin inhibitor (CpTI), which confers insect resistance in trangenic tobacco, was introduced into rice. Expression of the CpTi gene driven by the constitutively active promoter of the rice actin 1 gene (Act1) leads to high-level accumulation of the CpTI protein in transgenic rice plants. Protein extracts from transgenic rice plants exhibit a strong inhibitory activity against bovine trypsin, suggesting that the proteinase inhibitor produced in transgenic rice is functionally active. Small-scale field tests showed that the transgenic rice plants expressing the CpTi gene had significantly increased resistance to two species of rice stem borers, which are major rice insect pests. Our results suggest that the cowpea trypsin inhibitor may be useful for the control of rice insect pests.  相似文献   

2.
Proteinase inhibitors are widely distributed in animals, plants and microorganisms and their roles in plants are associated with defense against pests. The utilization of proteinase inhibitors for crop protection has been actively investigated with a variety of proteinase inhibitors. Soybean Kunitz trypsin inhibitor (SKTI), one of the major seed storage protein, is synthesized for a short period during seed development. To investigate the role of SKTI in a plant's defense system against insect predation, a recombinant plasmid containing the full-length cDNA of SKTI under control of the CaMV 35S promoter was introduced into rice protoplasts by using the PEG direct gene transfer method and a large number of transgenic rice plants were regenerated. The integration, expression, and inheritance of this gene was demonstrated in R1 and R2 generations by Southern, northern, and western analyses. Accumulation levels (0.05–2.5% of soluble proteins) of SKTI protein were detected in R1 and R2 plants. Bioassay with R1 and R2 transgenic plants revealed that transgenic plants are more resistant to destructive insect pest of rice, brown planthopper (Nilaparvata lugens Stål), than the control plants. Thus, introduction of SKTI into rice plants can be used to control insect pests.  相似文献   

3.
武亮  卜庆云  周明  杨世湖  万建民 《遗传》2006,28(3):261-267
以不同启动子驱动的马铃薯蛋白酶抑制剂Ⅱ基因(Pin-2x ,Pin-4x)转基因水稻为材料,经潮霉素抗性、PCR和Southern blot等检测对转基因水稻后代进行了遗传分析。结果显示:外源基因在68.4%的转基因植株中符合孟德尔遗传模式,单拷贝植株率为63.6%。转基因植株后代的PinⅡ蛋白活性测定结果表明:ActI和Ubi驱动的Pin-2x转基因水稻植株中,每克鲜叶片的PinⅡ蛋白含量为160μg和176μg,而由PIN5′驱动的Pin-4x为104μg,对照水稻仅为20μg。ActI和Ubi驱动的Pin表达产物对胰蛋白酶活性抑制程度分别达到37.7%和43.1%,明显高于Pin自身启动子PIN5′(29.2%)。叶片饲养粘虫幼虫的实验表明:转基因植株叶片对粘虫有抗性,但抗性达不到显著水平,且启动子效率、Pin表达量与抗粘虫   相似文献   

4.
A synthetic gene, mwti1b, coding for a winged bean trypsin inhibitor WTI-1B, has been introduced and expressed in rice plants, Oryza sativa. Protein extracts from transgenic rice plants expressing the trypsin inhibitor inhibited the gut proteases of larvae of the serious insect pest, the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae) in vitro. The growth of larvae reared on transgenic rice plants expressing WTI-1B at more than 1 ng/10 g total protein was significantly retarded compared to that on non-transgenic control plants.  相似文献   

5.
为研究NRRB在水稻抗逆反应中的作用,通过重叠延伸PCR扩增NRRB基因编码区,构建超量表达载体,并转化水稻愈伤组织获得超量表达转基因水稻植株。鉴定结果表明,该基因已被整合到水稻基因组中,并实现超量表达;同时构建了抑制表达载体,获得转基因株系,PCR检测结果证实NRRB基因在转基因水稻中受到明显抑制。对T1代转基因植株进行抗旱性、耐盐性分析,结果显示,超量表达NRRB基因增强了转基因水稻对干旱的抗性,抑制表达NRRB基因的转基因水稻对干旱的敏感性增强,表明NRRB正调控水稻对干旱的抗性;耐盐性分析表明,NRRB基因的抑制表达降低了植株对盐的敏感性。  相似文献   

6.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   

7.
The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.  相似文献   

8.
The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.  相似文献   

9.
Flagellin is a component of bacterial flagella and acts as a proteinaceous elicitor of defence responses in organisms. Flagellin from a phytopathogenic bacterium, Acidovorax avenae strain N1141, induces immune responses in suspension-cultured rice cells. To analyse the function of flagellin in rice, we fused the N1141 flagellin gene to the cauliflower mosaic virus 35S promoter and introduced it into rice. Many of the resulting transgenic rice plants accumulated flagellin at various levels. The transgenic rice developed pale spots in the leaves. The expression of a defence-related gene for phenylalanine ammonia-lyase was induced in the transgenic plants, and H(2)O(2) production and cell death were observed in some plants with high levels of gene expression, suggesting that the flagellin triggers immune responses in the transgenic rice. Transgenic plants inoculated with Magnaporthe grisea, the causal agent of rice blast, showed enhanced resistance to blast, suggesting that the flagellin production confers disease resistance in the transgenic rice.  相似文献   

10.
 The truncated chimeric Bt gene, cryIA(b) of Bacillus thuringiensis, driven by two constitutive promoters, 35S from CaMV and Actin-1 from rice, and two tissue-specific promoters, pith tissue and pepcarboxylase (PEPC) for green tissue from maize, was introduced into several varieties of rice (indica and japonica) by microprojectile bombardment and protoplast systems. A total of 1800 putative transgenic Bt rice plants could be produced. Southern analysis revealed that more than 100 independently transformed plants could be confirmed for integration of the cryIA(b) gene. High levels of CryIA(b) proteins were obtained in the green tissue (leaves and stem) of many plants using the PEPC promoter. There was little difference in Bt protein level in leaves and stems from transgenic plants with the 35 S or Actin-1 promoter. Out of 800 Southern-positive plants that were bioassayed, 81 transgenic plants showed 100% mortality of insect larvae of the yellow stem borer (Scirpophaga incertulas). The transgene, cryIA(b), driven by different promoters showed a wide range of expression (low to high) of Bt proteins stably inherited in a number of rice varieties with enhanced yellow stem borer resistance. This first report of transgenic indica Bt rice plants with the PEPC or pith promoter either alone or in combination should provide a better strategy for providing rice plants with protection against insect pest resistance, minimizing the expression of the CryIA(b) protein in seeds and other tissues. Received: 12 November 1997 / Accepted: 25 November 1997  相似文献   

11.
转Bt基因抗虫水稻的研究进展与生态安全评价   总被引:14,自引:3,他引:14  
表达杀虫蛋白的转Bt基因植物正在改革着现代农业.综述了国内外转Bt基因水稻及其抗虫性的研究进展及水稻害虫对Bt水稻的抗性风险及抗性管理策略,提出了对转基因Bt水稻进行生态安全风险评价的具体内容.  相似文献   

12.
13.
14.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   

15.
Nicotianamine (NA), a metal chelator ubiquitous in higher plants, serves as an antihypertensive substance in humans. To engineer a novel antihypertensive rice that contains larger amounts of NA, the barley NA synthase gene, HvNAS1 , was introduced into rice via Agrobacterium -mediated transformation. The introduced HvNAS1 was driven by pGluB-1 , which induces strong gene expression in the endosperm of rice seeds. The NA content in transgenic rice seeds was up to fourfold greater than that in non-transgenic rice seeds. The Cre/ loxP DNA excision (CLX) system was used to remove the selectable marker gene for antibiotic resistance. Furthermore, the transgenic rice was crossed with a cleistogamous mutant to prevent gene transfer via pollen dispersal. These two modifications may minimize public concern with regard to the use of this transgenic rice.  相似文献   

16.
Protoporphyrin IX is a photosensitizer and a causative agent of rice membrane lipid peroxidation in plant cells. Protoporphyrinogen IX oxidase (PPO) is the molecular target of PPO-inhibiting herbicides, which trigger a massive increase in protoporphyrin IX. Thus, any possible method to decrease the levels of protoporphyrin IX upon challenge with PPO-inhibiting herbicides could be employed to generate plants resistant to such herbicides. We generated transgenic rice plants overexpressing rice ferrochelatase isogenes encoding ferrochelatase enzymes, which convert protoporphyrin IX into protoheme, to see whether the transgenic plants have phenotypes resistant to PPO-inhibiting herbicides. The resulting transgenic rice plants were all susceptible to oxyfluorfen (a diphenyl-ether-type PPO-inhibiting herbicide), as judged by cellular damage with respect to cellular leakage, chlorophyll loss, and lipid peroxidation. In particular, the transgenic plants expressing rice ferrochelatase II without its plastid targeting sequence showed higher transgene expression and oxyfluorfen susceptibility than lines expressing the intact ferrochelatase II. Possible susceptibility mechanisms to oxyfluorfen herbicide in the transgenic rice plants are discussed.  相似文献   

17.
应用B.t.和SBTi基因提高水稻抗虫性的研究   总被引:21,自引:0,他引:21  
用基因枪法将单个B.t.基因或与SBTi基因一起导入到两个华南地区优良籼稻品种中,获得21个转B.t.单基因的植株系,4个转B.t.和SBTi双基因的植株系。对R1代植株的分子杂交和遗传分析表明,3个转双基因系中多个拷贝的B.t.和SBTi基因均是整合在植株基因组同一染色体上相同或相近位点。Northern blot证明在R2代转基因植株中B.t.基因稳定表达。对稻纵卷叶螟的抗性实验表明,转B.t.单基因或B.t.和SBTi双基因的转基因植株均较原种对照有更强的抗性,而转双基因植株较转单基因植株又有更强的抗性。  相似文献   

18.
Xu D  Duan X  Wang B  Hong B  Ho T  Wu R 《Plant physiology》1996,110(1):249-257
A late embryogenesis abundant (LEA) protein gene, HVA1, from barley (Hordeum vulgare L.) was introduced into rice suspension cells using the Biolistic-mediated transformation method, and a large number of independent transgenic rice (Oryza sativa L.) plants were generated. Expression of the barley HVA1 gene regulated by the rice actin 1 gene promoter led to high-level, constitutive accumulation of the HVA1 protein in both leaves and roots of transgenic rice plants. Second-generation transgenic rice plants showed significantly increased tolerance to water deficit and salinity. Transgenic rice plants maintained higher growth rates than nontransformed control plants under stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by stress and by improved recovery upon the removal of stress conditions. We also found that the extent of increased stress tolerance correlated with the level of the HVA1 protein accumulated in the transgenic rice plants. Using a transgenic approach, this study provides direct evidence supporting the hypothesis that LEA proteins play an important role in the protection of plants under water-or salt-stress conditions. Thus, LEA genes hold considerable potential for use as molecular tools for genetic crop improvement toward stress tolerance.  相似文献   

19.
Oryzacystatin (OC) is a proteinaceous cysteine proteinase inhibitor involved in the biodefense of rice seeds. To create transgenic rice plants with increased OC activity, we introduced an OC expressing vector into rice protoplasts and obtained transformed calli. The expression vector contained a bacterial inaA DNA fragment in the 3′-noncoding region as a tag to distinguish the introduced DNA from the intrinsic OC gene. The OC vector and a selection marker gene conferring hygromycin resistance were used together to transfect into rice protoplasts. A number of hygromycin-resistant calli were obtained and studied by polymerase chain reaction and genomic Southern blotting to find if the exogenous OC gene had been integrated. The calli were studied by northern blotting as well to examine mRNA expression. The results showed that integration and expression of the introduced OC gene occurred in 51% and 27%, respectively, of 156 subcultures from 15 hygromycin-resistant calli. As a final step, transgenic rice plants were regenerated from the calli expressing OC. Leaves and seeds from the plants had higher OC activities than those from nontransgenic plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号