首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cluster analysis can be a useful tool for exploratory data analysis to uncover natural groupings in data, and initiate new ideas and hypotheses about such groupings. When applied to short-term assay results, it provides and improves estimates for the sensitivity and specificity of assays, provides indications of association between assays and, in turn, which assays can be substituted for one another in a battery, and allows a data base containing test results on chemicals of unknown carcinogenicity to be linked to a data base for which animal carcinogenicity data are available. Cluster analysis was applied to the Gene-Tox data base (which contains short-term test results on chemicals of both known and unknown carcinogenicity). The results on chemicals of known carcinogenicity were different from those obtained when the entire data base was analyzed. This suggests that the associations (and possibly the sensitivities and specificities) which are based on chemicals of known carcinogenicity may not be representative of the true measures. Cluster analysis applied to the total data base should be useful in improving these estimates. Many of the associations between the assays which were found through the use of cluster analysis could be 'validated' based on previous knowledge of the mechanistic basis of the various tests, but some of the associations were unsuspected. These associations may be a reflection of a non-ideal data base. As additional data becomes available and new clustering techniques for handling non-ideal data bases are developed, results from such analyses could play an increasing role in strengthening prediction schemes which utilize short-term tests results to screen chemicals for carcinogenicity, such as the carcinogenicity and battery selection (CPBS) method (Chankong et al., 1985).  相似文献   

2.
Two procedures for predicting the carcinogenicity of chemicals are described. One of these (CASE) is a self-learning artificial intelligence system that automatically recognizes activating and/or deactivating structural subunits of candidate chemicals and uses this to determine the probability that the test chemical is or is not a carcinogen. If the chemical is predicted to be carcinogen, CASE also projects its probable potency.

The second procedure (CPBS) uses Bayesian decision theory to predict the potential carcinogenicity of chemicals based upon the results of batteries of short-term assays. CPBS is useful even if the test results are mixed (i.e. both positive and negative responses are obtained in different genotoxic assays). CPBS can also be used to identify highly predictive as well as cost-effective batteries of assays.

For illustrative purposes the ability of CASE and CPBS to predict the carcinogenicity of a carcinogenic and a non-carcinogenic polycyclic aromatic hydrocarbon is shown. The potential for using the two methods in tandem to increase reliability and decrease cost is presented.  相似文献   


3.
The Carcinogenicity Prediction and Battery Selection procedure was developed to address two problems: (1) the identification of highly predictive, yet cost-effective, batteries of short-term tests and (2) the objective prediction of the potential carcinogenicity of chemicals based upon the results of short-term tests even when a mixture of positive and negative results is obtained. In the present report the usefulness of the Carcinogenicity Prediction and Battery Selection procedure is demonstrated using benzo[a]pyrene, benzoin and diethylstilbestrol as examples. In addition, its applicability in the analysis of all the possible outcomes of a battery is illustrated together with an analysis of the worth of additional testing.Abbreviations B[a]P benzo[a]pyrene - CASE Computer-Automated Structure Evaluation - CPBS Carcinogenicity Prediction and Battery Selection - DEHP diethylhexylphthalate - DES diethylstilbestrol - NTA nitrilotriacetate - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

4.
Computer-generated genetic activity profiles and pairwise matching procedures may aid in the selection of the most appropriate short-term bioassays to be used in test batteries for the evaluation of the genotoxicity of a given chemical or group of chemicals. Selection of test batteries would be based on a quantitative comparative assessment of the past performance of similar tests applied to other chemicals of the same structural group. The information potentially available for test-battery selection through the use of this pattern-recognition technique is considerably greater than the qualitative results obtained from individual short-term tests. Application of the method should further our understanding of the relationships between chemical properties and genotoxic responses obtained in short-term bioassays and also may contribute to our knowledge of the mechanisms of complex processes such as carcinogenesis. This approach to battery selection should be augmented by careful consideration of established principles of genetic toxicity testing; that is, a chemical should be evaluated in a battery of tests representing the full range of relevant genetic endpoints.  相似文献   

5.
A construction of batteries of short-term tests (STTs) is described which is based on a classification of 73 chemicals in regard to their carcinogenicity. The 73 chemicals were studied within the U.S. National Toxicology Program (Ashby and Tennant, 1988). The batteries are validated using the classification of 35 additional chemicals. They are defined by logically structured combinations of rules. The single rules are defined by the z-scores of the logarithmic values of the limiting doses obtained from the 4 in vitro STTs used in the study by Ashby and Tennant. The limiting dose is defined as the lowest effective dose or the highest ineffective dose (Waters et al., 1987). The batteries are constructed by minimizing the number of disagreements with the classification by Ashby and Tennant. Compared with the results obtained from single STTs, 2 batteries of 3 STTs have higher concordances with the carcinogenicity data, namely 70% for the NTP data and 74-77% for the independent test data. In addition, a theoretical result shows that the proposed battery design, for a large enough learning set of chemicals, leads to results which are replicated with high probability on a large enough validation set. Based on the first results obtained with a limited number of chemicals it is concluded that the knowledge-based battery design is worth further development.  相似文献   

6.
Since the ability to induce genotoxicity is often equated with the potential for initiating the carcinogenic process, a method for quantitating genotoxicity would provide a useful measure for this potential. It is demonstrated herein that CPBS, the Carcinogenicity Prediction and Battery Selection method, provides a useful quantitative measure of genotoxicity as well as allowing for the detailed evaluation of the performance of batteries of short-term tests in order to select those predictive of carcinogenic potential.  相似文献   

7.
Genotoxicity testing of extracts of a Swedish moist oral snuff   总被引:3,自引:0,他引:3  
The present study was designed to investigate the potential genotoxicity of aqueous and methylene chloride extracts of Swedish moist oral snuff. The test systems were selected to provide optimal data for the prediction of carcinogenicity in rodents and included assays for the induction of mutation in bacteria, sister-chromatid exchanges (SCE) in human lymphocytes, of chromosome aberrations and gene mutations in V79 Chinese hamster cells and of micronuclei in mouse bone marrow cells. In addition, the methylene chloride extract was tested for the induction of sex-linked recessive lethal mutations in Drosophila melanogaster. The aqueous extract of 'Snus' induced SCE in human lymphocytes and chromosome aberrations in V79 cells, the latter effect being observed both with and without metabolic activation. No induction of point mutations was detected with the Ames test or in V79 cells and the micronucleus test in mice was negative. It was demonstrated that the induction of chromosome aberrations without metabolic activation may be due to a high salt concentration, indicating that the clastogenic agent(s) in this extract required metabolic activation. The methylene chloride extract showed genotoxicity in the Ames test, the SCE test and the chromosome aberration test, whereas no induction of gene mutations in V79 cells was observed. Once again, the results suggested that metabolism is required for genotoxicity. The methylene chloride extract did not cause induction of micronuclei in mice or of sex-linked recessive lethal mutations in Drosophila melanogaster. These combined data on genotoxicity were analyzed using various models for the prediction of carcinogenicity. In a sequential testing model, the probabilities that the aqueous and methylene chloride extracts of 'Snus' are carcinogenic due to a genotoxic mechanism were both predicted to be low. Using carcinogenicity prediction by battery selection (CPBS), the probabilities of the methylene chloride and aqueous extracts being correctly identified as non-carcinogens are 71 and 77%, respectively. Up to date, the CPBS approach has been validated primarily for individual compounds, so some caution should at present be exercised in interpreting the results using this method. Based on these results, the carcinogenic potential of Swedish 'Snus' should be considered to be low, a conclusion in agreement with the low incidence of oral cancer in Sweden compared to other countries.  相似文献   

8.
The cost-effectiveness of using short-term genotoxicity tests to screen unknown chemicals for carcinogenicity depends upon the inherent reliability of the tests (sensitivity, or fraction of carcinogens giving positive results, and specificity, or fraction of non-carcinogens giving negative results) and also upon the proportion of carcinogens in the population of chemicals to be screened. Individual tests may be combined into batteries to improve reliability; however, this requires decision rules to declare the overall result positive or negative. A framework for developing such rules based upon minimizing costs of false-positives and false-negatives was presented in a seminal paper by Lave and Omenn (1986, Nature (London), 324, 29-34). We have extended their work, which is based on logit analysis, to consider, using Bayes' theorem, the influence of the proportion of carcinogens upon the decision rules for declaring a battery result positive or negative. If the proportion of carcinogens is high (20% or greater), then the most effective tests are those with high sensitivity, and if the proportion of carcinogens is low, then the most effective tests are those with high specificity.  相似文献   

9.
With a view to developing methodologies for predicting the carcinogenicity of chemicals on the basis of the results of short-term assays and selecting highly predictive batteries of short-term tests, a data base was assembled. The present is a compilation of data extracted from the reports of Gene-Tox working groups, Salmonella mutagenicity data obtained from the U.S. National Toxicology Program and the Environmental Mutagen Information Center and results from BHK21 transformation assays.  相似文献   

10.
In 1969, the International Agency for Research on Cancer (IARC) initiated the Monographs Programme to evaluate the carcinogenic risk of chemicals to humans. Results from short-term mutagenicity tests were first included in the IARC Monographs in the mid-1970s based on the observation that most carcinogens are also mutagens, although not all mutagens are carcinogens. Experimental evidence at that time showed a strong correlation between mutagenicity and carcinogenicity and indicated that short-term mutagenicity tests are useful for predicting carcinogenicity. Although the strength of these correlations has diminished over the past 20 years with the identification of putative nongenotoxic carcinogens, such tests provide vital information for identifying potential human carcinogens and understanding mechanisms of carcinogenesis. The short-term test results for agents compiled in the EPA/IARC Genetic Activity Profile (GAP) database over nearly 15 years are summarized and reviewed here with regard to their IARC carcinogenicity classifications. The evidence of mutagenicity or nonmutagenicity based on a 'defining set' of test results from three genetic endpoints (gene mutation, chromosomal aberrations, and aneuploidy) is examined. Recommendations are made for assessing chemicals based on the strength of evidence from short-term tests, and the implications of this approach in identifying mutational mechanisms of carcinogenesis are discussed. The role of short-term test data in influencing the overall classification of specific compounds in recent Monograph volumes is discussed, particularly with reference to studies in human populations. Ethylene oxide is cited as an example.  相似文献   

11.
Short-term testing--are we looking at wrong endpoints?   总被引:3,自引:0,他引:3  
C Ramel 《Mutation research》1988,205(1-4):13-24
Short-term testing has been performed and interpreted on the basis of correlation between these tests and animal carcinogenicity. This empirical approach has been the only feasible one, due to a lack of knowledge of the actual genetic endpoints of relevance in carcinogenicity. However, the rapidly growing information on genetic alterations actually involved in carcinogenicity and in particular activation of oncogenes, provides facts of basic importance for the strategy of short-term testing. The presently used sets of short-term tests focus on standard genetic endpoints, mainly point mutations and chromosomal aberrations. Little attention has been paid in that connection to other endpoints, which have been shown or suspected to play an important role in carcinogenicity. These endpoints include gene amplification, transpositions, hypomethylation, polygene mutations and recombinogenic effects. Furthermore, indirect effects, for instance via radical generation and an imbalance of the nucleotide pool, may be of great significance for the carcinogenic and cocarcinogenic effects of many chemicals. Modern genetic and molecular technology has opened entirely new prospects for identifying genetic alterations in tumours and in its turn these prospects should be taken advantage of in order to build up more sophisticated batteries of assays, adapted to the genetic endpoints actually demonstrated to be involved in cancer induction. Development of new assay systems in accordance with the elucidation of genetic alterations in carcinogenicity will probably constitute one of the most important areas in genetic toxicology in the future. From a regulatory point of view the prerequisite for a development in this direction will be a flexibility of the handling of questions concerning short-term testing also at a bureaucratic level.  相似文献   

12.
The removal of carconogenic factors would be a most efficient measure to prevent cancer. As far as known chemicals are concerned, every effort is made to avert them, or at least to reduce the exposure to such compounds, but is necessary to detect unknown chemicals, especially those, drugs and foodstuffs for example, to which large populations are exposed. Giving suspected chemicals to laboratory animals is a standard carcinogenicity test. Studies of the carcinogenicity of unknown chemicals in animals are time consuming, expensive and cumbersome. This is why other means of establishing carcinogenicity are sought for. Several rapid tests are available to-day to select suspected carcinogens. These methods aim primarily at determining with chemicals--at the cell or tissue level--certain changes that would appear essential to trigger the carcinogenic process, such as somatic mutations. Studies are used on the mutagenicity of chemicals for bacteria of the Salmonella type, for yeast and cultured mammalian cells, together with the induction of recessive lethal mutations in Drosophila and of the unscheduled repair synthesis of DNA and the transformation of mammalian cells in vitro. Although there is an unequivocal correlation between the activity of chemicals in such tests and their carcinogenicity, discrepancies are found. Thus, the in vivo tests on laboratory animals remain the most reliable method to determine carcinogenicity. Whereas direct extrapolation of experimental data to human pathology is impossible, the experimental evidence of the carcinogenicity of any chemical should allow us to draw constructive conclusions. We shall never be able to reject drugs which produce the expected results and cannot be replaced by other drugs. But we can must the drugs whose beneficial effects are not exceptional and which can be replaced by other chemicals. As for the chemicals used in food additives and cosmetics, and recognized as carcinogenic in animals, they should be totally given up. Any decision made should be based on animal studies.  相似文献   

13.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

14.
A new method of the efficiency assessment of testing mutagenicity chemical pollutants is proposed. The method is based on the selective information criterion and allows one to compare the prognostic significance of results obtained in both individual tests and test batteries. The efficiency of mutagen detection in mammals was estimated in Ames' test, the in vivo test for cytogenetic abnormalities in rodent bone-marrow cells, and the battery combining both these tests. The level of evidence for mutagenicity was determined for chemicals analyzed in these tests. Based on information obtained during the trials, a low efficiency of the analyzed tests and their battery was inferred.  相似文献   

15.
A new method of the efficiency assessment of testing mutagenicity chemical pollutants is proposed. The method is based on the selective information criterion and allows one to compare the prognostic significance of results obtained in both individual tests and test batteries. The efficiency of mutagen detection in mammals was estimated in Ames' test, the in vivo test for cytogenetic abnormalities in rodent bone-marrow cells, and the battery combining both these tests. The level of evidence for mutagenicity was determined for chemicals analyzed in these tests. Based on information obtained during the trials, a low efficiency of the analyzed tests and their battery was inferred.  相似文献   

16.
The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.  相似文献   

17.
111 chemicals of known rodent carcinogenicity (49 carcinogens, 62 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, hepatocarcinogens, and halogenated hydrocarbons, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 111 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. Composite parameters are defined as follows: CP = [ODC and P450), CT = [ALT and ODC), and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 55%, specificity 87%, positive predictivity 77%, negative predictivity 71%, and concordance 73%. For these chemicals, the 73% concordance of this study was superior to the concordance obtained from published data from other laboratories on the Ames test (53%), structural alerts (SA) (46%), chromosome aberrations in Chinese hamster ovary cells (ABS) (48%), cell mutation in mouse lymphoma 15178Y cells (MOLY) (52%), and sister-chromatid exchange in Chinese hamster ovary cells (SCE) (60%). The 4 in vivo biochemical assays were complementary to each other. The composite parameter TS also shows complementarity to all 5 other predictors of rodent cancer examined in this paper. For example, the Ames test alone has a concordance of only 53%. In combination with TS, the concordance is increased to 62% (Ames or TS) or to 63% (Ames and TS). For the 67 chemicals with data available for SA, the concordance for predicting rodent carcinogenicity was 47% (for SA alone), 54% (for SA or TS), and 66% (for SA and TS). These biochemical assays will be useful: (1) to predict rodent carcinogenicity per se, (2) to 'confirm' the results of short-term mutagenicity tests by the high specificity mode of the biochemical assays (the specificity and positive predictivity are both 100%), and (3) to be a component of future complementary batteries of tests for predicting rodent carcinogenicity.  相似文献   

18.
A statistical procedure is described for assessing the predictive performance of short-term tests for carcinogenicity in which the actual number of chemicals tested is taken into consideration. The method is then applied to several widely used short-term assays.  相似文献   

19.
The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.  相似文献   

20.
The assessment of the potential carcinogenicity of a chemical requires a systematic approach taking into account various types of data. Important information on the DNA reactivity and other genetic effects of chemicals can be obtained from a battery of cellular tests. A battery is described which includes DNA repair in hepatocytes, mutagenesis in Salmonella typhimurium, mutagenesis, chromosome alterations, and transformation in mammalian cells. The interpretation of findings in this battery for the identification of potential carcinogenicity of chemicals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号