首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subunit compositions of skin and muscle type I collagens from rainbow trout were found to be alpha1(I)alpha2(I)alpha3(I) and [alpha1(I)](2)alpha2(I), respectively. The occurrence of alpha3(I) has been observed only for bonyfish. The skin collagen exhibited more susceptibility to both heat denaturation and MMP-13 digestion than the muscle counterpart; the former had a lower denaturation temperature by about 0.5 degrees C than the latter. The lower stability of skin collagen, however, is not due to the low levels of imino acids because the contents of Pro and Hyp were almost constant in both collagens. On the other hand, some cDNAs coding for the N-terminal and/or a part of triple-helical domains of proalpha(I) chains were cloned from the cDNA library of rainbow trout fibroblasts. These cDNAs together with the previously cloned collagen cDNAs gave information about the complete primary structure of type I procollagen. The main triple-helical domain of each proalpha(I) chain had 338 uninterrupted Gly-X-Y triplets consisting of 1014 amino acids and was unique in its high content of Gly-Gly doublets. In particular, the bonyfish-specific alpha(I) chain, proalpha3(I) was characterized by the small number of Gly-Pro-Pro triplets, 19, and the large number of Gly-Gly doublets, 38, in the triple-helical domain, compared to 23 and 22, respectively, for proalpha1(I). The small number of Gly-Pro-Pro and the large number of Gly-Gly in proalpha3(I) was assumed to partially loosen the triple-helical structure of skin collagen, leading to the lower stability of skin collagen mentioned above. Finally, phylogenetic analyses revealed that proalpha3(I) had diverged from proalpha1(I). This study is the first report of the complete primary structure of fish type I procollagen.  相似文献   

2.
Summary The complete 129-amino-acid sequences of two rainbow trout lysozymes (I and II) isolated from kidney were established using protein chemistry microtechniques. The two sequences differ only at position 86, I having aspartic acid and II having alanine. A cDNA clone coding for rainbow trout lysozyme was isolated from a cDNA library made from liver mRNA. Sequencing of the cloned cDNA insert, which was 1 kb in length, revealed a 432-bp open reading frame encoding an amino-terminal peptide of 15 amino acids and a mature enzyme of 129 amino acids identical in sequence to II. Forms I and II from kidney and liver were also analyzed using enzymatic amplification via PCR and direct sequencing; both organs contain mRNA encoding the two lysozymes. Evolutionary trees relating DNA sequences coding for lysozymesc and α-lactalbumins provide evidence that the gene duplication giving rise to conventional vertebrate lysozymesc and to lactalbumin preceded the divergence of fishes and tetrapods about 400 Myr ago. Evolutionary analysis also suggests that amino acid replacements may have accumulated more slowly on the lineage leading to fish lysozyme than on those leading to mammal and bird lysozymes.  相似文献   

3.
Remodeling of fibrillar collagen in mouse tissues has been widely attributed to the activity of collagenase-3 (matrix metalloproteinase-13 (MMP-13)), the main collagenase identified in this species. This proposal has been largely based on the repeatedly unproductive attempts to detect the presence in murine tissues of interstitial collagenase (MMP-1), a major collagenase in many species, including humans. In this work, we have performed an extensive screening of murine genomic and cDNA libraries using as probe the full-length cDNA for human MMP-1. We report the identification of two novel members of the MMP gene family which are contained within the cluster of MMP genes located at murine chromosome 9. The isolated cDNAs contain open reading frames of 464 and 463 amino acids and are 82% identical, displaying all structural features characteristic of archetypal MMPs. Comparison for sequence similarities revealed that the highest percentage of identities was found with human interstitial collagenase (MMP-1). The new proteins were tentatively called Mcol-A and Mcol-B (Murine collagenase-like A and B). Analysis of the enzymatic activity of the recombinant proteins revealed that both are catalytically autoactivable but only Mcol-A is able to degrade synthetic peptides and type I and II fibrillar collagen. Both Mcol-A and Mcol-B genes are located in the A1-A2 region of mouse chromosome 9, Mcol-A occupying a position syntenic to the human MMP-1 locus at 11q22. Analysis of the expression of these novel MMPs in murine tissues revealed their predominant presence during mouse embryogenesis, particularly in mouse trophoblast giant cells. According to their structural and functional characteristics, we propose that at least one of these novel members of the MMP family, Mcol-A, may play roles as interstitial collagenase in murine tissues and could represent a true orthologue of human MMP-1.  相似文献   

4.
Interstitial collagen types I, II and III are highly resistant to proteolytic attack, due to their triple helical structure, but can be cleaved by matrix metalloproteinase (MMP) collagenases at a specific site, approximately three-quarters of the length from the N-terminus of each chain. MMP-2 and -9 are closely related at the structural level, but MMP-2, and not MMP-9, has been previously described as a collagenase. This report investigates the ability of purified recombinant human MMP-9 produced in insect cells to degrade native collagen types I and III. Purified MMP-9 was able to cleave the soluble, monomeric forms of native collagen types I and III at 37 degrees C and 25 degrees C, respectively. Activity against collagens I and III was abolished by metalloproteinase inhibitors and was not present in the concentrated crude medium of mock-transfected cells, demonstrating that it was MMP-9-derived. Mutated, collagenase-resistant type I collagen was not digested by MMP-9, indicating that the three-quarters/one-quarter locus was the site of initial attack. Digestion of type III collagen generated a three-quarter fragment, as shown by comparison with MMP-1-mediated cleavage. These data demonstrate that MMP-9, like MMP-2, is able to cleave collagens I and III in their native form and in a manner that is characteristic of the unique collagenolytic activity of MMP collagenases.  相似文献   

5.
Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11'). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11') of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.  相似文献   

6.
In this report, three type I IFN genes were identified in rainbow trout (rt) Oncorhynchus mykiss and are classified into two groups based on their primary protein sequences: group I containing two cysteine residues; and group II containing four cysteines residues. The group I rtIFNs were induced in fibroblasts (RTG-2 cells), macrophages (RTS-11 cells), and head kidney leukocytes when stimulated with polyinosinic:polycytidylic acid, whereas group II IFN was up-regulated in head kidney leukocytes but not in RTG-2 and RTS-11 cells. Recombinant group I rtIFNs were potent at inducing Mx expression and eliciting antiviral responses, whereas recombinant group II rtIFN was poor in these activities. That two subgroups of type I IFN exist in trout prompted a survey of the genomes of several fish species, including zebrafish, medaka, threespine stickleback and fugu, the amphibian Xenopus tropicalis, the monotreme platypus and the marsupial opossum, to gain further insight into possible IFN evolution. Analysis of the sequences confirmed that the new IFN subgroup found in trout (group II IFN) exists in other fish species but was not universally present in fish. The IFN genes in amphibians were shown for the first time to contain introns and to conserve the four cysteine structure found in all type I IFNs except IFN-betaepsilon and fish group I IFN. The data overall support the concept that different vertebrate groups have independently expanded their IFN types, with deletion of different pairs of cysteines apparent in fish group I IFN and IFN-betaepsilon of mammals.  相似文献   

7.
Human neutrophils can be triggered to release the collagenolytic metalloenzymes, interstitial collagenase and 92 kDa type IV collagenase/gelatinase. We have isolated and sequenced a 2.3 kb cDNA from a chronic granulocytic leukemia cDNA library that encodes for human neutrophil type IV collagenase. With the exception of one amino-acid substitution at position 280 (Arg → Gln), the deduced amino-acid sequences of neutrophil gelatinase are identical to the amino-acid sequences of the enzyme isolated from fibrosarcoma cells. Expression of the cDNA in E. coli yielded a 72 kDa protein having a gelatinolytic activity on zymogram gel. The recombinant enzyme was activated with APMA and trypsin. The activation was accompanied by a reduction in molecular weight of ≈ 10 kDa; such a reduction is characteristic of matrix metalloproteinases. The recombinant gelatinase cleaved native type V and XI collagens. Native type I collagen was not a substrate for the enzyme. These data suggest that native and recombinant 92 kDa type IV collagenase produced in E. coli have similar biochemical properties. The successful expression of the collagenase in a prokaryotic system will greatly facilitate the structure-function characterization of the enzyme and allow a more precise analysis of its physiological and pathological roles.  相似文献   

8.
A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.  相似文献   

9.
A 1.2-kb cDNA fragment encoding a platelet 47-kDa protein has been isolated from a human bone marrow cDNA library by using a degenerate oligonucleotide of the sequenced amino terminus of the purified platelet protein with a poly(dT)(12).(dG) by polymerase chain reaction. A computer search revealed that the cDNA represents the coding sequence of a protein with a fragmentary homology to several proteins. Using a prokaryotic expression system, pBad TOPO-47 cDNA, a 47-kDa recombinant protein was obtained and purified to apparent homogeneity by nickel-nitrilotriacetic acid resin and collagen affinity column. The recombinant protein binds to type III but not type I collagen-Sepharose 2B affinity columns. Anti-47-kDa but not anti-65-kDa antibody inhibits the binding of the recombinant protein to the type III collagen-coated micro titer wells in a dose-dependent manner. Like the receptor protein purified from platelet membranes, the recombinant protein inhibits type III collagen-induced platelet aggregation also in a dose-dependent manner. We have defined two active peptides from the cloned deduced amino acid sequence. Both peptides inhibit type III but not type I collagen-induced platelet aggregation in a dose-dependent fashion. These results suggest that the active binding site of the platelet receptor to type III collagen resides in these portions of the protein.  相似文献   

10.
Calpains are Ca2+-dependent intracellular cysteine proteases, including the ubiquitously expressed micro- and m-calpains. Both are heterodimers, consisting of a distinct catalytic subunit and a common regulatory subunit. We describe cloning and sequencing of the calpain small (regulatory) subunit (cpns) cDNA from rainbow trout. This represents the first fish and lower vertebrate full cDNA of cpns. The rainbow trout cpns cDNA was used to retrieve the zebra fish and Japanese flounder homologues. We present evidence that fish cpns, unlike the conventional mammalian predominant isoform, cpnsl, is lacking the glycine-rich region of domain V. Because the glycine-rich region is known to play a role in membrane targeting, this divergent cpns suggests potentially different functional and activation mechanisms of the fish calpain system. A phylogenetic tree for the cpns gene superfamily has been constructed and the evolution of cpns considered.  相似文献   

11.
12.
Here, I investigate features of the heat-shock protein beta1 (HspB1) that may be unique to cold-water fish. cDNAs encoding HspB1 were cloned from the rainbow trout Oncorhynchus mykiss, and two splice variants, Hspb1_tv1 and Hspb1_tv2, were identified. The C-terminus of the deduced proteins had a polyglutamic acid (polyE) stretch that is not found in other vertebrate HspB1s. In fish exposed to a continuous heat shock, the mRNA level of Hspb1_tv1 increased whereas that of b1_tv2 decreased. Northern blot and RT-PCR analyses showed that under normal physiological conditions Hspb1_tv1 mRNA is predominantly expressed in muscle tissues, although it is present in all organs. In contrast, Hspb1_tv2 mRNA is selectively expressed in muscle tissues, particularly in the heart. Distinctive features of rainbow trout Hspb1, such as having two splice variants and a polyE stretch, may contribute to the function of the protein under the typical low-temperature habitat of cold-water fish.  相似文献   

13.
This report describes the cloning, nutritional regulation and tissue distribution of a desaturase-like enzyme in rainbow trout (Oncorhynchus mykiss). The open reading frame of the trout desaturase-like cDNA encodes a 454-amino acid peptide that contains two membrane-spanning domains, three histidine-rich regions and a cytochrome b5 domain, which all align perfectly with the same domains located in other recently identified vertebrate Delta5- and Delta6-desaturases. Nutritional regulation of trout desaturase-like gene expression, as well as the tissue expression profile, are also similar to those observed in other vertebrate Delta5- and Delta6-desaturases. Finally, the sequence alignments between the predicted protein sequence of rainbow trout desaturase-like and other Delta6- and Delta5-desaturases revealed a high percentage identity with Delta6-desaturases (64-66% identity with vertebrate Delta6-desaturases). These results demonstrate for the first time the presence and nutritional modulation of a Delta6-desaturase-like cDNA in rainbow trout.  相似文献   

14.
During progression from benign nevus to vertical growth phase melanoma, melanocytes acquire the ability to invade into the dermis. This process requires rupture of the basal lamina and dissolution of dermal type I collagen. Metastases-derived human melanoma MIM cells have an invasive ability in vitro which is dependent on metalloproteinases. In the present study we analysed the role of type I collagenase (MMP-1) in melanoma invasion using MIM cells in which the constitutive expression of MMP-1 was suppressed by stable transfection with a plasmid vector expressing a 777 bp antisense fragment of MMP-1 genomic DNA. Two clones were isolated in which MMP-1 mRNA expression was blocked by 90–96% with a corresponding loss in protein synthesis. In their morphological appearance and growth rate in vitro these cells were indistinguishable from wild type cells or control cells transfected with the same vector expressing the MMP-1 fragment in the sense orientation. Their mRNA and protein levels for type IV collagenase (MMP-2) were unchanged as assessed by Northern and Western blot analyses and by gelatin zymography. However, when the invasive ability of the cells was measured, we found that in addition to type I collagen, invasion through type IV collagen and a reconstituted, type IV collagen-containing basement membrane (Matrigel) were also significantly inhibited as compared to normal or sense-transfected cells. The results indicate that despite the presence of functional MMP-2, degradation of type IV collagen matrices by the melanoma cells was dependent on expression of MMP-1. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

15.
Summary The influence of trout serum on the attachment and spreading of isolated trout hepatocytes maintained in primary culture at different temperatures was evaluated. Hepatocytes were obtained from young rainbow trout (Salmo gairdneri) by collagenase dissociation and maintained in modified Leibowitz L15 medium at 10° or 27° C for 24 h in plastic dishes previously coated with type I bovine collagen. In the absence of serum, fewer than 10% of hepatocytes attached and none of them spread on the collagen substrate. Trout serum at concentrations as low as 1.25% in the medium resulted in a pronounced concentration-dependent increase in hepatocyte attachment, as determined by direct counts by phase contrast microscopy, or by percentage of lactate dehydrogenase activity attached to the dishes after washing away unattached cells. Attachment rates were greater at the lower temperature (10° C). Trout serum also substantially increased the proportion of attached hepatocytes that spread as monolayers on the collagen substrate, especially at 10° C. By comparison, fetal bovine serum had little influence on the attachment or spreading of trout hepatocytes. These studies demonstrate a simple inexpensive method for preparing attached monolayer trout hepatocyte cultures. This procedure may be useful in toxicologic or functional studies in which fish hepatocyte attachment is an operational requirement.  相似文献   

16.
Five different type I keratins from a teleost fish, the rainbow trout Oncorhynchus mykiss, have been sequenced by cDNA cloning and identified at the protein level by peptide mass mapping using MALDI-MS. This showed that the entire range of type I keratins detected biochemically in this fish has now been sequenced. Three of the keratins are expressed in the epidermis (subtype Ie), whereas the other two occur in simple epithelia and mesenchymal cells (subtype Is). Among the Is keratins is an ortholog of human K18; the second Is polypeptide is clearly distinct from K18. We raised a new monoclonal antibody (F1F2, subclass IgG1) that specifically recognizes trout Is keratins, with negative reactions on zebrafish. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new sequences together with type I sequences from other vertebrates such as shark, zebrafish, and human; a recently sequenced lamprey Is keratin was applied as outgroup. This tree shows one branch defining the K18 orthologs and a second branch containing all other type I keratins (mostly subtype Ie). Within this second branch, the teleost keratins form a separate, highly bootstrap-supported twig. This tree leaves little doubt that the teleost Ie keratins diversified independently from the mammalian Ie keratins.  相似文献   

17.
We have shown in a variety of human wounds that collagenase-1 (MMP-1), a matrix metalloproteinase that cleaves fibrillar type I collagen, is invariably expressed by basal keratinocytes migrating across the dermal matrix. Furthermore, we have demonstrated that MMP-1 expression is induced in primary keratinocytes by contact with native type I collagen and not by basement membrane proteins or by other components of the dermal or provisional (wound) matrix. Based on these observations, we hypothesized that the catalytic activity of MMP-1 is necessary for keratinocyte migration on type I collagen. To test this idea, we assessed keratinocyte motility on type I collagen using colony dispersion and colloidal gold migration assays. In both assays, primary human keratinocytes migrated efficiently on collagen. The specificity of MMP-1 in promoting cell movement was demonstrated in four distinct experiments. One, keratinocyte migration was completely blocked by peptide hydroxymates, which are potent inhibitors of the catalytic activity of MMPs. Two, HaCaTs, a line of human keratinocytes that do not express MMP-1 in response to collagen, did not migrate on a type I collagen matrix but moved efficiently on denatured type I collagen (gelatin). EGF, which induces MMP-I production by HaCaT cells, resulted in the ability of these cells to migrate across a type I collagen matrix. Three, keratinocytes did not migrate on mutant type I collagen lacking the collagenase cleavage site, even though this substrate induced MMP-1 expression. Four, cell migration on collagen was completely blocked by recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1) and by affinity-purified anti–MMP-1 antiserum. In addition, the collagen-mediated induction of collagenase-1 and migration of primary keratinocytes on collagen was blocked by antibodies against the α2 integrin subunit but not by antibodies against the α1 or α3 subunits. We propose that interaction of the α2β1 integrin with dermal collagen mediates induction of collagenase-1 in keratinocytes at the onset of healing and that the activity of collagenase-1 is needed to initiate cell movement. Furthermore, we propose that cleavage of dermal collagen provides keratinocytes with a mechanism to maintain their directionality during reepithelialization.  相似文献   

18.
Matrix metalloproteinases (MMPs) are essential for normal collagen turnover, recovery from fibrosis, and vascular permeability. In fibrillar collagens, MMP-1, MMP-8, and MMP-13 cleave a specific glycine–isoleucine or glycine–leucine bond, despite the presence of this sequence in other parts of the protein. This cut site specificity has been hypothesized to arise from a unique, relaxed super-secondary structure in this area due to local hydroxyproline poor character. In this study we examined the mechanism of interaction and cleavage of human type III collagen by fibroblast MMP-1 by using a panel of recombinant human type III collagens (rhCIIIs) containing engineered sequences in the vicinity of the cleavage site. Native and recombinant type III collagens had similar biochemical and structural characteristics, as indicated by transmission electron microscopy, circular dichroism spectropolarimetry, melting temperature and hydroxyproline analysis. A single amino acid change at the I785 cleavage site to proline resulted in partial MMP-1 resistance, but cuts were found in novel sites in the original cleavage region. However, the replacement of five Y-position residues by proline in this region, regardless of I785 variation, conferred complete resistance to MMP-1, MMP-8, MMP-13, trypsin, and elastase. MMP-1 had a decreased specific activity towards and reduced cleavage rate of rhCIII I785P but a Km similar to wild-type. Despite the reductions in protease sensitivity, MMP-1 bound to all of the engineered rhCIIIs with comparable affinity, indicating that MMP-1 binding is not sufficient for cleavage. The relaxed tertiary structure in the MMP cleavage region may permit local collagen unwinding by MMP-1 that enables site-specific proteolysis.  相似文献   

19.
20.
The carnitine palmitoyltransferase I (EC.2.3.1.21; CPT I) mediates the transport of fatty acids across the outer mitochondrial membrane. In mammals, there are two different proteins CPT I in the skeletal muscle (M) and liver (L) encoded by two genes. The carnitine palmitoyltransferase system of lower vertebrates received little attention. With the aim of improving knowledge on the CPT family in fish, we examined CPT I cDNA and CPT activity in different tissues of rainbow trout (Oncorhynchus mykiss). Using RT-PCR, we successfully cloned a partial CPT I cDNA sequence (1650 bp). The predicted protein sequence revealed identities of 63% and 61% with human L-CPT I and M-CPT I, respectively. This mRNA is expressed in liver, white and red skeletal muscles, heart, intestine, kidney and adipose tissue of trout. This is in good agreement with the measurement of the CPT activity in the same tissues. The [IC(50)] that reflects the sensitivity to malonyl-CoA inhibition was 0.116+/-0.004 microM for the liver and 0.426+/-0.041 microM for the white muscle. These results demonstrate for the first time the existence of at least one gene encoding for CPT I present in both the liver and the muscle of rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号