首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of oat (Avena sativa L.) phytoalexins, avenanthramides, occurred in leaf segments treated with oligo-N-acetylchitooligosaccharides. The amount of avenanthramide A, the major oat phytoalexin, reached a maximum 36–48 h after elicitor treatment. This accumulation was preceded by a marked increase in enzyme activities of phenylpropanoid pathway members, including phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamate 4-hydroxylase (EC 1.14.13.11) and 4-coumarate:CoA ligase (EC 6.2.1.12). These enzyme activities reached a maximum 6–12 h after elicitor treatment, when the avenanthramides were produced most rapidly. Both phenylalanine ammonia-lyase and 4-coumarate:CoA ligase activities decreased thereafter to undetectable levels 72 h after treatment, while cinnamate 4-hydroxylase activity showed a second increase 48 h after treatment. Among the chitooligosaccharides tested, tetra- and pentasaccharides most effectively induced these enzyme activities in a dose-dependent manner. The elicitor-induced 4-coumarate: CoA ligase accepted all hydroxycinnamic acids occurring in the avenanthramides as substrates, with the exception of avenalumic acid. These findings indicate that accumulation of the avenanthramides results from de-novo synthesis through the general phenylpropanoid pathway and that early biosynthetic enzymes function as regulatory points of carbon flow to the avenanthramides. Received: 3 December 1998 / Accepted: 27 January 1999  相似文献   

2.
4-Coumarate:coenzyme A (CoA) ligase (4CL, EC 6.2.1.12) in crude enzyme preparation from the developing xylem of black locust (Robinia pseudoacacia) converted sinapate to sinapoyl CoA. The sinapate-converting activity was not inhibited by other cinnamate derivatives, such as p-coumarate, caffeate or ferulate, in the mixed-substrate assay. The crude extract prepared from the developing xylem was separated by anion-exchange chromatography into three different 4CL isoforms. The isoform 4CL1 had a strong substrate preference for p-coumarate, but lacked the activity for ferulate and sinapate. On the other hand, 4CL2 and 4CL3 displayed activity toward sinapate and also possessed high activity toward caffeate as well as p-coumarate. The crude extract from the shoots exhibited a very similar substrate preference to that of the developing xylem; therefore, 4CL2 may be a major isoform in both crude enzyme preparations. These results support the hypothesis that sinapate-converting 4CL isoform is constitutively expressed in lignin-forming cells.  相似文献   

3.
Enzymatic synthesis and purification of aromatic coenzyme a esters   总被引:1,自引:0,他引:1  
Two recombinant His-tagged proteins, a plant 4-coumarate:coenzyme A ligase (EC 6.2.1.12) and a bacterial benzoate:coenzyme A ligase (EC 6.2.1.25), were expressed in Escherichia coli and purified in a single step using Ni-chelating chromatography. Purified enzymes were used to synthesize cinnamoyl-coenzyme A (CoA), p-coumaroyl-CoA, feruloyl-CoA, caffeoyl-CoA, and benzoyl-CoA. Conversions up to 95% were achieved. Using a rapid solid-phase extraction procedure, the target CoA esters were isolated with yields of up to 80%. Structures were confirmed by analytical comparison with chemically synthesized reference compounds and electrospray ionization-mass spectrometry. The recombinant enzymes were stable for several months at -80 degrees C, thus providing a reliable and facile method to produce these delicate biological intermediates.  相似文献   

4.
4-coumarate:CoA ligase (4CL), the last enzyme of the general phenylpropanoid pathway, provides precursors for the biosynthesis of a large variety of plant natural products. 4 CL catalyzes the formation of CoA thiol esters of 4-coumarate and other hydroxycinnamates in a two step reaction involving the formation of an adenylate intermediate. 4 CL shares conserved peptide motifs with diverse adenylate-forming enzymes such as firefly luciferases, non-ribosomal peptide synthetases, and acyl:CoA synthetases. Amino acid residues involved in 4 CL catalytic activities have been identified, but domains involved in determining substrate specificity remain unknown. To address this question, we took advantage of the difference in substrate usage between the Arabidopsis thaliana 4 CL isoforms At4CL1 and At4CL2. While both enzymes convert 4-coumarate, only At4CL1 is also capable of converting ferulate. Employing a domain swapping approach, we identified two adjacent domains involved in substrate recognition. Both substrate binding domain I (sbd I) and sbd II of At4CL1 alone were sufficient to confer ferulate utilization ability upon chimeric proteins otherwise consisting of At4CL2 sequences. In contrast, sbd I and sbd II of At4CL2 together were required to abolish ferulate utilization in the context of At4CL1. Sbd I corresponds to a region previously identified as the substrate binding domain of the adenylation subunit of bacterial peptide synthetases, while sbd II centers on a conserved domain of so far unknown function in adenylate-forming enzymes (GEI/LxIxG). At4CL1 and At4CL2 differ in nine amino acids within sbd I and four within sbd II, suggesting that these play roles in substrate recognition.  相似文献   

5.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

6.
Hydroxycinnamate: CoA ligase was partially purified from the basidiomycete, Polyporus hispidus. The enzyme required ATP and CoA. Reduced activity was obtained with GTP. The same preparations catalyzed acetyl CoA formation. Light-grown cultures yielded preparations with an increased activity for hydroxycinnamic acids but not for acetate.  相似文献   

7.
Chalcones, the central precursor of flavonoids, are synthesized exclusively in plants from tyrosine and phenylalanine via the sequential reaction of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL) and chalcone synthase (CHS). Chalcones are converted into the corresponding flavanones by the action of chalcone isomerase (CHI), or non-enzymatically under alkaline conditions. PAL from the yeast Rhodotorula rubra, 4CL from an actinomycete Streptomyces coelicolor A3(2), and CHS from a licorice plant Glycyrrhiza echinata, assembled as artificial gene clusters in different organizations, were used for fermentation production of flavanones in Escherichia coli. Because the bacterial 4CL enzyme attaches CoA to both cinnamic acid and 4-coumaric acid, the designed biosynthetic pathway bypassed the C4H step. E. coli carrying one of the designed gene clusters produced about 450 μg naringenin/l from tyrosine and 750 μg pinocembrin/l from phenylalanine. The successful production of plant-specific flavanones in bacteria demonstrates the usefulness of combinatorial biosynthesis approaches not only for the production of various compounds of plant and animal origin but also for the construction of libraries of "unnatural" natural compounds. Dedicated to Professor Sir David Hopwood.  相似文献   

8.
9.
4-Chlorobenzoate:CoA ligase, the first enzyme in the pathway for 4-chlorobenzoate dissimilation, has been partially purified from Arthrobacter sp. strain TM-1, by sequential ammonium sulphate precipitation and chromatography on DEAE-Sepharose and Sephacryl S-200. The enzyme, a homodimer of subunit molecular mass approximately 56 kD, is dependent on Mg2+-ATP and coenzyme A, and produces 4-chlorobenzoyl CoA and AMP. Besides Mg2+, Mn2+, Co2+, Fe2+ and Zn2+ are also stimulatory, but not Ca2+. Maximal activity is exhibited at pH 7.0 and 25 degrees C. The ligase demonstrates broad specificity towards other halobenzoates, with 4-chlorobenzoate as best substrate. The apparent Michaelis constants (Km) of the enzyme for 4-chlorobenzoate, CoA and ATP were determined as 3.5, 30 and 238 microM respectively. 4-Chlorobenzoyl CoA dehalogenase, the second enzyme, has been purified to homogeneity by sequential column chromatography on hydroxyapatite, DEAE-Sepharose and Sephacryl S-200. It is a homotetramer of 33 kD subunits with an isoelectric point of 6.4. At pH 7.5 and 30 degrees C, Km and kcat for 4-CBCoA are 9 microM and 1 s(-1) respectively. The optimum pH is 7.5, and maximal enzymic activity occurs at 45 degrees C. The properties of this enzyme are compared with those of the 4-chlorobenzoyl CoA dehalogenases from Arthrobacter sp. strain 4-CB1 and Pseudomonas sp. strain CBS-3, which differ variously in their N-terminal amino acid sequences, optimal pH values, pI values and/or temperatures of maximal activity.  相似文献   

10.
Benzoate:CoA ligase (BZL) was partially purified from flowers of the annual California plant Clarkia breweri. BZL catalyzes the formation of benzoyl-CoA and anthraniloyl-CoA, important intermediates for subsequent acyltransferase reactions in plant secondary metabolism. The native enzyme is active as a monomer with a molecular mass of approximately 59-64.5 kDa, and it has K(m) values of 45, 95, and 130 microM for benzoic acid, ATP, and CoA, respectively. BZL is most active in the pH range of 7.2-8.4, and its activity is strictly dependent on certain bivalent cations. BZL is an AMP-forming enzyme. Overall, its properties suggest that it is related to the family of CoA ligase enzymes that includes the plant enzyme 4-hydroxycinnamate:CoA ligase.  相似文献   

11.
12.
Lu H  Zhao YL  Jiang XN 《Biotechnology letters》2004,26(14):1147-1152
The ability of 4-coumarate:coenzyme A ligase promoter from Populus tomentosa (Pto4CL1p) to drive expression of the GUS reporter gene and 4-coumarate:coenzyme A ligase gene in tobacco has been studied using transgenic plants produced by Agrobacterium-mediated transformation. Intense GUS histochemical staining was detected in the xylem of stem in transgenic tobacco plants carrying the 1140 bp Pto4CL1p promoter. To further investigate the regulation function of the tissue-specific expression promoter, Pto4CL1p, a binary vector containing Pto4CL1p promoter fused with 4CL1 gene was transferred into tobacco. The activity of the 4CL1 enzyme doubled in the stems of transgenic tobacco but did not increase in the leaves. The content of lignin was increased 25% in the stem but there was no increase in the leaves of transgenic tobacco.  相似文献   

13.
Neither salicylate nor ibuprofen was a substrate or inhibitor of the long-chain fatty acid: CoA ligase. In contrast, all three xenobiotic-metabolizing medium-chain fatty acid:CoA ligases (XL-I, XL-II, and XL-III) had activity toward salicylate. The Km value for salicylate was similar for all three forms (2 to 3 μM), but XL-II and XL-III had higher activity at Vmax. For ibuprofen, only XL-III catalyzed its activation, and it had a Km for ibuprofen of 36 μM. Studies of salicylate inhibition of XL-I, XL-II, and XL-III revealed that it inhibited the benzoate activity of all three forms with K1 values of ca. 2 μM, which is in agreement with the Km values obtained with salicylate as substrate. Kinetic analysis revealed that salicylate conjugation by all three forms is characterized by substrate inhibition when salicylate exceeds ca. 20 μM. Substrate inhibition was more extensive with XL-I and XL-III. Previous work on the ligases employed assay concentrations of salicylate in the range of 0.1 to 1.0 mM, which are clearly inhibitory, particularly toward XL-I and XL-III. Thus, activity was not properly measured in previous studies, which accounts for the fact that salicylate conjugation was only found with one form, which is most likely XL-II since it has the highest Vmax activity and shows the least amount of substrate inhibition. Studies with ibuprofen indicated that it inhibited XL-I, XL-II, and XL-III, with K1 values being in the range of 75–125 μM. The short-chain ligase was inhibited by both salicylate and ibuprofen with K1 values of 93 and 84 μM, respectively. It was concluded that pharmacological doses of salicylate, but not ibuprofen, will affect the metabolism of medium-chain fatty acids and carboxylic acid xenobiotics and that the previously described mitochondrial ibuprofen:CoA ligase activity is attributable to XL-III. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The enzyme 4-coumarate:coenzyme A ligase (4CL) plays an important role in phenylpropanoid metabolism. The 5′-upstream regions of two Sm4CL genes were isolated from danshen (Salvia miltiorrhiza Bunge) and their functions were characterized by promoter-directed GUS gene expression assay in transgenic Arabidopsis. Seedlings containing pSm4CL1 promoter:GUS fusions showed apparent GUS staining in hypocotyl and those harboring pSm4CL2 promoter:GUS fusions were clearly stained in cotyledon vasculars and roots. Mature Arabidopsis transformed with pSm4CL1 promoter:GUS exhibited GUS expression which was weak in the shoots and scarcely in roots and those modified with pSm4CL2 promoter:GUS displayed obvious GUS staining in roots, stigmatic papillae, stamens and sepal veins. Semi-quantitative RT-PCR revealed that Sm4CL2 was transcribed at the highest level in roots which was also shown to be the major accumulation site of salvianolic acid B. The results suggested that Sm4CL2 rather than Sm4CL1 might be responsible for the biosynthesis of salvianolic acid B in danshen roots.  相似文献   

15.
Successful modification of plant cell-wall composition without compromising plant integrity is dependent on being able to modify the expression of specific genes, but this can be very challenging when the target genes are members of multigene families. 4-coumarate:CoA ligase (4CL) catalyzes the formation of 4-coumaroyl CoA, a precursor of both flavonoids and monolignols, and is an attractive target for transgenic down-regulation aimed at improving agro-industrial properties. Inconsistent phenotypes of transgenic plants have been attributed to variable levels of down-regulation of multiple 4CL genes. Phylogenetic analysis of the sorghum genome revealed 24 4CL(-like) proteins, five of which cluster with bona fide 4CLs from other species. Using a map-based cloning approach and analysis of two independent mutant alleles, the sorghum brown midrib2 (bmr2) locus was shown to encode 4CL. In vitro enzyme assays indicated that its preferred substrate is 4-coumarate. Missense mutations in the two bmr2 alleles result in loss of 4CL activity, probably as a result of improper folding as indicated by molecular modeling. Bmr2 is the most highly expressed 4CL in sorghum stems, leaves and roots, both at the seedling stage and in pre-flowering plants, but the products of several paralogs also display 4CL activity and compensate for some of the lost activity. The contribution of the paralogs varies between developmental stages and tissues. Gene expression assays indicated that Bmr2 is under auto-regulatory control, as reduced 4CL activity results in over-expression of the defective gene. Several 4CL paralogs are also up-regulated in response to the mutation.  相似文献   

16.
Black pepper (Piper nigrum L.) is known for its high content of piperine, a cinnamoyl amide derivative regarded as largely responsible for the pungent taste of this widely used spice. Despite its long history and worldwide use, the biosynthesis of piperine and related amides has been enigmatic up to now. In this report we describe a specific piperic acid CoA ligase from immature green fruits of P. nigrum. The corresponding enzyme was cloned and functionally expressed in E. coli. The recombinant enzyme displays a high specificity for piperic acid and does not accept the structurally related feruperic acid characterized by a similar C‐2 extension of the general C6–C3 phenylpropanoid structure. The enzyme is also inactive with the standard set of hydroxycinnamic acids tested including caffeic acid, 4‐coumaric acid, ferulic acid, and sinapic acid. Substrate specificity is corroborated by in silico modelling that suggests a perfect fit for the substrate piperic acid to the active site of the piperic acid CoA ligase. The CoA ligase gene shows its highest expression levels in immature green fruits, is also expressed in leaves and flowers, but not in roots. Virus‐induced gene silencing provided some preliminary indications that the production of piperoyl‐CoA is required for the biosynthesis of piperine in black pepper fruits.  相似文献   

17.
4-Coumarate:coenzyme A ligase (4CL) plays a key role in phenylpropanoid metabolism, providing precursors for a large variety of important plant secondary metabolites, such as lignin, flavonoids, and phytoalexins. Although 4CLs have been believed to be specific to plants, a gene encoding a 4CL-like enzyme which shows more than 40% identity in amino acid sequence to plant 4CLs was found in the genome of the gram-positive, filamentous bacterium Streptomyces coelicolor A3(2). The recombinant enzyme, produced in Escherichia coli with a histidine tag at its N-terminal end, showed distinct 4CL activity. The optimum pH and temperature of the reaction were pH 8.0 and 30 degrees C, respectively. The K(m) value for 4-coumarate and k(cat) were determined as 131 +/- 4 micro M and 0.202 +/- 0.007 s(-1), respectively. The K(m) value was comparable to those of plant 4CLs. The substrate specificity of this enzyme was, however, distinctly different from those of plant 4CLs. The enzyme efficiently converted cinnamate (K(m), 190 +/- 2 micro M; k(cat), 0.475 +/- 0.012 s(-1)), which is a very poor substrate for plant 4CLs. Furthermore, the enzyme showed only low activity toward caffeate and no activity toward ferulate, both of which are generally good substrates for plant 4CLs. The enzyme was therefore named ScCCL for S. coelicolor A3(2) cinnamate CoA ligase. To determine the amino acid residues providing the unique substrate specificity of ScCCL, eight ScCCL mutant enzymes having a mutation(s) at amino acid residues that probably line up along the substrate-binding pocket were generated. Mutant A294G used caffeate as a substrate more efficiently than ScCCL, and mutant A294G/A318G used ferulate, which ScCCL could not use as a substrate, suggesting that Ala(294) and Ala(318) are involved in substrate recognition. Furthermore, the catalytic activities of A294G and A294G/A318G toward cinnamate and 4-coumarate were greatly enhanced compared with those of the wild-type enzyme.  相似文献   

18.
Callus cells of Daucus carota L. have different phenylpropanoid pathways depending on the medium composition. Cells propagated on a medium with gibberellic acid do not accumulate cyanidin but incorporate [14C]phenylalanine into chlorogenic acid at a high rate. Cells grown on a medium free of gibberellic acid accumulate cyanidin in very large amounts. We here describe partial purification of hydroxycinnamate: CoA ligase, and its properties in these two cell lines. The enzymes extracted from the two cell populations had different substrate specifities: for that from anthocyanin-containing cells, p-coumaric acid was the best substrate, and caffeic acid and ferulic acid were also activated. With enzyme from anthocyanin-free cells, the lowest Km values were obtained for caffeic acid, while ferulic acid had higher values, and p-coumaric acid was nearly inactive. The enzyme did not separate into isoenzymes during purification. Only on polyacrylamide gels the partially purified enzyme from anthocyanin-containing cells separated into three peaks, and that from anthocyanin-free cells, into only two peaks. This difference is discussed in the context of the lack of activity with p-coumaric acid in anthocyanin-free cells.Abbreviations GA3 gibberellic acid  相似文献   

19.
A survey of a range of plant tissues showed that the hydroxycinnamate CoA ligase in crude extracts of pea shoots had a high relative activity towards sinapic and other methoxycinnamic acids, together with high activity with p-coumaric acid. The pea enzyme has been resolved by chromatography on DEAE-cellulose into two peaks which differ in their substrate specificity. The form which elutes at relatively low salt concentrations has a ratio activity towards p-coumaric and sinapic acids of about 1.8:1 while the form eluting at higher salt concentrations, although showing very high activity with p-coumaric acid, is inactive towards sinapic acid. The pattern of elution of these forms following gel filtration on Ultragel AcA 34 and Sephadex G100 suggests that these two isoenzymes which differ in ionic properties and substrate specificity can exist in two or three molecular weight forms and there is evidence that these forms are under certain circumstances interconvertible.  相似文献   

20.
A. Feutry  R. Letouze 《Phytochemistry》1984,23(8):1557-1559
Hydroxycinnamate: CoA ligase was extracted from stems of in vitro willow cultures and characterized. One peak of activity was obtained after column chromatography on Sephadex G 100 or DEAE Sephacel. p-Coumaric acid gave the highest Vmax among the cinnamates examined. The Kmvalues for p-coumaric, caffeic and ferulic acid were 31.0, 4.7 and 46 μM, respectively. The MW of the CoA ligase was 57 000 and the pH optimum was 7.0. The characteristics of the enzyme correspond to its physiological role in lignin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号