首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evidence suggests that prey can vary in their susceptibility to predation depending on their developmental stage. Stage‐dependent predation is of particular importance to integrated pest management, because it is often a particular developmental stage of a pest that causes the majority of the damage to the crop. An understanding of stage‐dependent biocontrol is therefore important for predicting the ultimate impact of herbivore populations. In this article, we addressed this issue by focusing on the stage structure of Lygus hesperus Knight (Heteroptera: Miridae) populations in cotton as related to the density of a specific generalist predator. We first demonstrated in a field experiment that Geocoris spp. adults suppressed L. hesperus eggs and/or early instars (first through third), but did not suppress fourth through fifth instars or adult L. hesperus. We then demonstrated that this stage‐specific predation translated into season‐long shifts in the stage structure of L. hesperus populations in cotton fields. Using weekly sweep counts across 21 separate cotton fields, we found a negative correlation between season‐long Geocoris spp. densities and season‐long densities of L. hesperus nymphs. In contrast, there was no such correlation between Geocoris spp. and L. hesperus adults. Taken together, these results suggest that Geocoris spp. predators influence the stage structure of L. hesperus populations in cotton, which in turn has the potential to affect patterns of cotton square damage and sampling bias when monitoring L. hesperus populations.  相似文献   

2.
Unexplained variability in the relationship between the number of herbivores in a field and the amount of crop damage can arise if there is a large amount of variation among herbivore individuals in the amount of feeding damage each generates. In California, populations of the western tarnished plant bug, Lygus hesperus Knight (Heteroptera: Miridae), produce highly variable levels of damage to cotton plants (Gossypium hirsutum L.) (Malvaceae), even when found at low densities. Because L. hesperus populations are also highly variable in their overall stage structure, we hypothesize that differences in crop damage might result from varying impact by each L. hesperus stage on cotton flower buds (termed squares). Laboratory measurements of L. hesperus mouth‐parts and distance to anther sacs, a preferred feeding site, revealed that 1st?3rd instar L. hesperus nymphs will not be able to feed on anther sacs of larger squares (over 8 mm in length) but will be able to feed on squares that are most sensitive to L. hesperus damage (<7 mm). Because even the 1st instars can feed on the most sensitive ‘pinhead’ squares, size constraints do not rule out damaging effects from the youngest L. hesperus. Laboratory observations revealed that later developmental stages, and adults, spend more time feeding on cotton squares relative to 2nd and 3rd instars. In addition, a field experiment revealed no effect of 2nd instars on square retention (relative to control cages) but did reveal a significant decrease in square retention generated by adult L. hesperus (4th instar L. hesperus resulted in an intermediate level of square retention). In a final study we sampled L. hesperus stage structure and density across 38 cotton fields. Multiple regression revealed that the densities of 1st?3rd instars of L. hesperus are not correlated with anther sac damage or square retention. However, in 2 years 4th and 5th instars were positively correlated with anther sac damage and negatively correlated with square retention. In the a third year, adult L. hesperus showed correlations in the same direction, across fields and across sites within fields. Overall, these results suggest that the adults and the largest nymphs of L. hesperus (4th and 5th instars) are particularly damaging to cotton squares, with the 1st?3rd instars of L. hesperus causing little damage to plants.  相似文献   

3.
Understanding the effect of cropping patterns on population dynamics, dispersal, and habitat selection of insect pests has been an unresolved challenge. Here, we studied the western tarnished plant bug, Lygus hesperus (Knight) (Heteroptera: Miridae), in cotton during early summer in central Arizona. We used a general approach based on global positioning system (GPS) and geographic information system (GIS) technologies combined with spatial statistics to assess the maximum distance at which forage and seed alfalfa, fallow fields with weeds, and cotton affect L. hesperus population density. Using a set of 50 cotton fields as focal fields, we found that forage and seed alfalfa as well as weeds acted as L. hesperus sources for these cotton fields. The source effect did not extend beyond 375, 500, and 1500 m for forage alfalfa, weeds, and seed alfalfa, respectively. Conversely, cotton fields acted as L. hesperus sinks, but this effect did not extend further than 750 m from the focal cotton fields. These findings suggest that specific spatial arrangements of these field types could reduce L. hesperus damage to cotton. The spatially explicit approach used here provides a direct evaluation of the effects of agroecosystem heterogeneity on pest population dynamics, dispersal, and habitat selection, which is a significant asset for the development and improvement of areawide pest management.  相似文献   

4.
Landscape composition plays an important, but poorly understood, role in the population dynamics of agricultural pest species with broad host ranges including both crops and weeds. One such pest, the generalist plant bug Lygus hesperus Knight (Hemiptera: Miridae), is a key cotton pest that feeds on various hosts differing in quality in California's San Joaquin Valley (USA). We investigated the effects of 15 common crops and uncultivated agricultural land on L. hesperus populations, by correlating the densities of L. hesperus in focal cotton fields with the areas of the 16 crops in surrounding rings. Insect counts were provided by private pest‐control advisors, and spatial data were obtained from Kern County records. We first calculated Spearman's partial correlation coefficients on an annual basis for each crop separately, and then performed a meta‐analysis of these correlations across years to describe the overall effect of a particular crop on L. hesperus after the effects of the 15 other crops are removed. Consistent with studies conducted in other areas, L. hesperus density was positively correlated with safflower, and negatively with cotton. Lygus hesperus density was also correlated with several other crops that are often not considered in pest management, including grape, oat, and onion (positive correlations), and almond, pistachio, and potato (negative correlations). Lygus hesperus density was also found to be negatively correlated with alfalfa and positively correlated with uncultivated habitats, a relationship that receives mixed support in the literature. Several other crops tested were not significantly correlated with L. hesperus densities in focal cotton fields, suggesting a neutral role for them in L. hesperus dynamics. The improved understanding of the effects of a greater variety of crops on L. hesperus population dynamics will be useful in the design of agricultural landscapes for enhanced management of this important polyphagous pest.  相似文献   

5.
6.
Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California''s San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year''s crop on June densities of the pest Lygus hesperus and the effect of the prior year''s crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.  相似文献   

7.
Producers of Bt cotton, Gossypium hirsutum L. (Malvaceae), in the southeastern USA face significant losses from highly polyphagous stink bug species. These problems may be exacerbated by crop rotation practices that often result in cotton, peanut, Arachis hypogaea L., and soybean, Glycine max (L.) Merrill (both Fabaceae), growing in close proximity to one another. Because all of these crops are hosts for the major pest stink bug species in the region, we experimentally examined colonization preference of these species among the crops to clarify this aspect of their population dynamics. We planted peanut, soybean, Bt cotton, and glyphosate‐tolerant (RR) non‐Bt cotton at three sites over 3 years in replicated plots ranging from 192 to 1 323 m2 and calculated odds ratios for colonization of each crop for Nezara viridula (L.) and Euschistus servus (Say) (both Hemiptera: Pentatomidae). In four of five experiments, both E. servus and N. viridula preferred soybean significantly more often than Bt cotton, non‐Bt cotton, and peanut. Neither N. viridula nor E. servus showed any preference between non‐Bt and Bt cotton in any experiment. Both species had higher numbers in Bt and non‐Bt cotton relative to peanut; this was not significant for any single experiment, but analyses across all experiments indicated that N. viridula preferred Bt and non‐Bt cotton significantly more often than peanut. Our results suggest that soybean in the landscape may function as a sink for stink bug populations relative to nearby peanut and cotton when the soybean is in the reproductive stage of development. Stink bug preference for soybean may reduce pest pressure in near‐by crops, but population increases in soybean could lead to this crop functioning as a source for later‐season pest pressure in cotton.  相似文献   

8.
Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an ecoinformatics approach to pest management research, which attempts to harness these data to answer questions about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study. Consultant-derived data satisfied a ‘positive control’ test for data quality by clearly resolving the expected negative relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest management research have strengths and weaknesses that complement those of traditional, experimental approaches; combining these methods can contribute to enhanced agricultural productivity.  相似文献   

9.
Abstract This study examined the diel activity pattern and the effect of diel activity pattern on predation rate and prey finding of Dicyphus hesperus Knight (Heteroptera: Miridae). To determine the diel activity pattern of D. hesperus, starved females were placed on tomato leaflets Lycopersicon esculentum Mill. (Solanaceae) under zero, low, or high light intensities at 02:00, 08:00, and 14:00 h, respectively, and the amount of time spent walking or resting during a 30‐min interval was recorded. Predation rates of D. hesperus females on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) egg patches were determined under either a L16:D8 (long day) or L8:D16 (short day) diel period. Egg patches were removed from D. hesperus females after either 8 or 16 h of dark or 16 or 8 h of light, and the number of eggs consumed was counted. Dicyphus hesperus females spent more time searching for prey at night than during the day. Females ate eggs at a higher rate during the night than during the day. Overall, D. hesperus females had higher predation rates when reared under a long day diel cycle compared with females reared under a short day diel cycle. More females reared at the L16:D8 diel cycle found the egg patch during the night than during the day. There was no difference in egg patch finding between night and day for females reared at L8:D16. Overall, L16:D8 reared females found more egg patches than females reared at L8:D16. Therefore, D. hesperus females are more active and find and consume prey at a higher rate at night than day.  相似文献   

10.
A series of bioassays were conducted to determine the response of adult western tarnished plant bugs, Lygus hesperus Knight (Heteroptera: Miridae), to artificial diets containing potassium chloride (KCl). We first examined the feeding behavior of L. hesperus by direct observation in a no‐choice diet feeding arena. We observed a total of 22 Lygus feeding events lasting an average of 411 ± 64 s on the control artificial diet and only three feeding events lasting an average of 11 ± 3 s on the KCl‐treated diet. We then conducted several multiple diet choice bioassays to determine the feeding response of L. hesperus when exposed simultaneously to five artificial diet treatments containing different amounts of KCl. For the first bioassay, we used standard clear parafilm diet packets and for the second bioassay we used dark green parafilm diet packets to hold the various diet treatments. Regardless of the diet packet color, L. hesperus overwhelmingly selected the 0% KCl diet treatment over diets containing 3, 6, 9, or 12% KCl. The third and fourth multiple diet choice bioassays were identical to the first bioassay, except that concentrations of the KCl‐treated diets were reduced. Lygus hesperus consistently selected the control diet over all diets containing more than 0.5% KCl. However, when the concentration of KCl in the diet was reduced to ≤0.4%, there were no significant differences in feeding activity exhibited by L. hesperus. Finally, to determine if the addition of KCl to the diet influenced their upwind response, we examined the responses of L. hesperus that were simultaneously exposed to a control artificial diet and a diet containing 12% KCl in a Y‐tube olfactometer bioassay. Of the 95 adults tested, 47 selected the arm containing the normal diet and 48 selected the arm containing KCl‐treated diet, indicating that dietary constituents did not preferentially attract or repel L. hesperus. The results from these studies strongly suggest that KCl negatively affects L. hesperus feeding behavior by functioning as a strong gustatory deterrent when concentrations exceed 0.5%. Visual and volatile cues appeared to have no role in mediating orientation or feeding behavior under these test conditions.  相似文献   

11.
Dicyphus hesperus Knight (Heteroptera: Miridae) is an omnivorous predator used to control pests of greenhouse vegetables. Plant preferences and life history traits were studied using nine plant species: Lycopersicon esculentum Mill. (Solanaceae), Capsicum annuum L. (Solanaceae), Verbascum thapsus L. (Scrophulariaceae), Nepeta cataria L. (Lamiaceae), Stachys albotomentosa (Lamiaceae), Nicotiana tabacum L. (Solanaceae), Vicia sativa L. (Fabaceae), Zea mays L. (Gramineae), and Chrysanthemum coronarium L. (Asteraceae). Plants were selected from among potential target crops, natural hosts, plants used for mass rearing, and plants on which D. hesperus has not been reported. Plant preference was measured by multi‐choice host plant selection and oviposition assays. Development and reproduction were measured on each of the plant species on both a plant diet alone and on a plant diet supplemented with Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Dicyphus hesperus females and nymphs expressed a preference for some plants over others. Plant preference ranged from low preference plants, such as Z. mays, V. sativa, C. coronarium, and C. annuum, to high preference plants such as V. thapsus, N. tabacum, and S. albotomentosa. When E. kuehniella eggs were supplied, there were few differences in the development time and fecundity of D. hesperus among plants, with the exception of corn and broad bean, where fecundity was lower. On a plant diet alone, nymphs were able to complete their development on V. thapsus, C. annuum, and N. cataria. However, mortality and development time were much lower on V. thapsus than on C. annuum and N. cataria. On most of the plant species D. hesperus did not lay any eggs when fed on a plant diet alone. On V. thapsus, females laid a few eggs and lived longer than when fed on prey. Dicyphus hesperus females tended to prefer host plants on which nymph survival without prey was greatest.  相似文献   

12.
  • 1 Understanding the spatio‐temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasize the biological control of pests.
  • 2 Wild populations of Trichogramma Westwood egg parasitoids are utilized for the biological suppression of the potentially resistant pest species Helicoverpa armigera (Hübner) in Bt‐transgenic cotton Gossypium hirsutum L. crops in the Ord River Irrigation Area (ORIA), Western Australia, Australia.
  • 3 Extensive, spatially‐stratified sampling during a season of relatively high Trichogramma abundance found that spatial patterns of pest egg parasitism in the ORIA tend toward heterogeneity, and do not necessarily coincide with host spatio‐temporal dynamics. Both patterns of host egg density and mean rates of parasitism are not good indicators of parasitoid spatio‐temporal dynamics in ORIA cotton crops.
  • 4 Parasitism rates can be significantly higher within the middle strata of the cotton plant canopy before complete canopy closure, despite a similar number of host eggs being available elsewhere in the plant.
  • 5 Spatial variation in egg parasitism by Trichogramma in Bt‐transgenic cotton is evident at the between‐field, within‐field and within‐plant scale, and is not solely driven by host spatial dynamics. These factors should be considered when estimating Trichogramma impact on pest species during biological control and spatio‐temporal studies of host‐parasitoid interactions in general.
  相似文献   

13.
Selection pressure on bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), by cotton, Gossypium hirsutum (L.) (Malvaceae), that produces one or more Bacillus thuringiensis Berliner (Bt) proteins is reduced by plantings of non‐Bt refuge cotton that produce non‐selected individuals. However, the contributions of non‐Bt, non‐cotton crop hosts to the overall effective refuge for H. zea on Bt cotton have not been estimated. A 2‐year, season‐long study was conducted in five US cotton‐producing states to assess the spatial and temporal population dynamics and host use of H. zea. Helicoverpa zea larval estimates in commercial crop fields demonstrated that non‐cotton crop hosts, such as maize, Zea mays L. (Poaceae), grain sorghum, Sorghum bicolor (L.) Moench (Poaceae), peanut, Arachis hypogaea L. (Fabaceae), and soybean, Glycine max (L.) Merrill (Fabaceae), collectively support much larger larval populations than cotton throughout the season. Larval populations were almost entirely restricted to maize in the middle part of the season (June and portions of July), and were observed in non‐cotton crop hosts more frequently and typically in larger numbers than in cotton during the period when production would be expected in cotton (July and August). Numbers of H. zea larvae produced in replicated strip trials containing various crop hosts paralleled production estimates from commercial fields. In contrast, the number of H. zea adults captured in pheromone traps at interfaces of fields of Bt cotton and various crop hosts rarely varied among interfaces, except in instances where maize was highly attractive. With the exception of this early season influence of maize, moth numbers were not related to local larval production. These data demonstrate that H. zea adults move extensively from their natal host origins. Therefore, non‐cotton crop hosts, and even relatively distant hosts, contribute significantly to effective refuge for H. zea on Bt cotton. The results presented here demonstrate that substantial natural refuge is present for Bt‐resistance management of H. zea throughout the mid‐South and Southeast portions of the US cotton belt.  相似文献   

14.
Lygus hesperus is an important pest of many crops grown in the Western US. In addition, other species of Lygus cause damage in other parts of the world. To date, no selective pesticide exists for the control of Lygus spp. and broad spectrum pesticides that also kill natural enemies may lead to secondary pests. Entomopathogenic fungi may offer an alternative to chemical pesticides. Isolates of Beauveria bassiana collected from San Joaquin Valley of California (SJV) L. hesperus populations were screened for their ability to grow at high temperatures and for their ability to infect and kill L. hesperus adults and nymphs under laboratory conditions. No isolate grew at 37 or 35 °C but most isolates were able to grow at 32 °C. In addition, one L. hesperus isolate was more efficacious at higher doses than the commercial isolate. Microsatellite markers were used to determine that selected isolates could be distinguished from other isolates. Preliminary information suggested 82 SJV isolates of B. bassiana were closely related to each other but distantly related to the commercial isolate.  相似文献   

15.
A standardized sampling plan is the starting point for developing a decision‐making system for pest control. Aphis gossypii (Hemiptera: Aphididae) is a destructive sap‐feeding pest on cotton worldwide. However, research addressing cotton cultivar, plant phenology and field size with the aim of developing a sampling plan for A. gossypii has not been done. Therefore, in this study, we developed a standardized sampling for A. gossypii as a function of these factors. To accomplish this, A. gossypii densities in four experimental cotton cultivars were sampled weekly during year one to determine the ideal aphid characteristic to sample (by individual or colony). During year one and two, A. gossypii densities were sampled weekly in the same cultivars to determine sampling unit, sampling technique and the number of samples for an A. gossypii sampling plan. Using the sample number determined, the sampling time was recorded for cotton field size of 1, 5, 10, 50, 100 and 150 ha in order to estimate the sampling cost. In cotton, the count of individuals was the best characteristic for the assessment of A. gossypii. Leaves of the most apical branches for the vegetative and reproductive cotton plant stage were the best sampling units. The best sampling technique was direct counting. The cotton cultivar did not affect the development of the sampling plan. The A. gossypii sampling plan involved the evaluation of 58 samples per zone and required 20 min (<0.35 min/sample) for the evaluation of these samples. However, the walking time between samples was the main factor responsible for the total sampling time and cost in cotton fields, and this factor strongly depends on the size of the cotton field.  相似文献   

16.
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is a pest of various fruit, vegetable, fiber, and seed crops; including cotton. Lygus spp. populations often build on alternate host plants before moving to cotton, and in the midsouthern U.S. wild host plants, such as pigweed (Amaranthus spp.), play a major role in L. lineolaris population development. Three isolates of the entomopathogenic fungus Beauveria bassiana (Balsamo) were evaluated for L. lineolaris control in redroot pigweed (Amaranthus retroflexus L.): one from L. lineolaris in Mississippi (TPB3); one from Lygus hesperus (Knight) in California (WTPB2); and one commercial isolate from Mycotrol® (GHA). Fungal applications resulted in moderate to high mycosis in adults (33 to 80%) and moderate mycosis in nymphs (36 to 53%) that were collected from field plots at 2 days post-treatment and incubated under laboratory conditions. Although TPB3 was previously found to be more pathogenic in laboratory bioassays, there was not a consistent separation of this isolate from the other two isolates in field trials. Where differences in adult mycosis or mortality were observed, TPB3 was the most pathogenic. However, in one field trial 7 day mortality for nymphs treated with GHA was higher than those treated with TPB3 or WTPB2. Infection rates at 2, 7, and 14 days post-treatment from caged and non-caged adults suggested that movement of adults among plots occurred, which could have masked some treatment effects. Fungal treatments did not significantly reduce populations relative to controls. This may have been caused by delayed mortality rates under field conditions and/or difficulties with estimating population change under field conditions characteristic of wild host plant populations (e.g., heterogeneous populations, adult movement, and small plot size). Further work evaluating time–dose–mortality over dynamic temperatures, spring and fall field trials on this and other wild hosts, and improved methods for estimating populations on wild hosts are needed.  相似文献   

17.
Piffaretti, J., Vanlerberghe‐Masutti, F., Tayeh, A., Clamens, A.‐L., C?ur d’Acier, A. & Jousselin E. (2012). Molecular phylogeny reveals the existence of two sibling species in the aphid pest Brachycaudus helichrysi (Hemiptera: Aphididae). —Zoologica Scripta, 41, 266–280. Brachycaudus helichrysi is a worldwide polyphagous aphid pest that seriously damages its primary hosts (Prunus spp.) and the various cultivated plants among its secondary hosts (e.g. sunflower). A recent study of the Brachycaudus genus suggested that this species might encompass two differentiated lineages. We tested this hypothesis, by carrying out a phylogenetic study of this aphid pest based on worldwide sampling and the evaluation of mitochondrial, nuclear and Buchnera aphidicola DNA markers. We show that this species is actually an amalgamation of two sibling taxa, B. helichrysi H1 and B. helichrysi H2, that seem to have overlapping geographic ranges and herbaceous host plant preferences. These two taxa displayed levels of genetic divergence as great as those generally found between sister species in the Brachycaudus genus, suggesting that they actually correspond to two distinct species. Our phylogenetic reconstructions revealed a degree of incongruence between the topologies obtained with the aphid gene data set and with data for a DNA marker from its primary endosymbiont. We identified possible reasons for this observation and discuss the ecological and genotypic data suggesting that B. helichrysi H1 and B. helichrysi H2 have different life cycles.  相似文献   

18.
19.
Abstract The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is the most destructive pest of potato, Solanum tuberosum L. (Solanaceae), in tropical and subtropical regions in both field and storeroom situations. The modeling of temperature‐dependent development can be useful in forecasting occurrence and population dynamics of the pests. Published developmental parameters for this pest vary greatly for many reasons. We determined temperature‐dependent development of P. operculella at seven constant temperatures (16, 20, 24, 28, 32, 34 and 36 °C). Developmental period of whole immature stage (egg to the end of the pupal stage) varied from 75.5 days at 16 °C to 17 days at 32 °C. The population failed to survive at 36 °C. The observed data was modeled to determine mathematical functions for simulating P. operculella development in each stage of development and overall. Two linear models, ordinary linear regression and the Ikemoto linear model were used to describe the relationship between temperature and development rate of the different stages of P. operculella and estimating the thermal constant and lower temperature threshold. The lower temperature threshold (t) and thermal constant (k) of whole immature stage were estimated to be 11.6 °C and 338.5 DD by Ikemoto linear model, and the estimated parameters were not substantially different with those estimated by ordinary linear models. Different models provided a better fit to the various developmental stages. Of the eleven nonlinear models fitted, the Beriere‐1, Logan‐6 and Lactin‐1 model was found to be the best for modeling development rate of egg, larva and pupa of P. operculella, respectively. Phenological models based on these findings can be part of a decision‐support tool to improve the efficiency of pest management programs.  相似文献   

20.
Abstract 1. Competing foragers are affected by the distribution of resources, but can also affect resource distribution. Intraguild predators may affect the distribution of both the shared prey and the intraguild prey, which are also their competitors. 2. Variation in foraging strategies and their effects on resource distributions may influence the outcome of intraguild interactions between an intraguild predator and its intraguild prey. This was tested using whitefly Trialeurodes vaporariorum as the shared resource, the parasitoid Encarsia formosa as the intraguild prey, and Dicyphus hesperus, an omnivore, as the intraguild predator on tomato (Lycopersicon esculentum) and mullein (Verbascum thapsus) plants, within enclosures in a greenhouse. Treatments were established with and without the intraguild predator and at high and low intraguild prey densities. 3. The interaction between D. hesperus and E. formosa showed significant asymmetry, with D. hesperus populations being unaffected by E. formosa densities, although E. formosa populations were reduced by the inclusion of D. hesperus. However, the inclusion of D. hesperus diminished density‐dependent effects limiting E. formosa populations at high release densities. 4. Dicyphus hesperus reduced the average patch size and the proportion of patches occupied by whitefly. Increasing the release rate of E. formosa had no effect on any distributional measure. Based upon the foraging ecology of both species, the foraging activities of D. hesperus appear to have modified the patch distribution so that its foraging strategy becomes more successful than that of E. formosa. These properties may provide an important mechanism determining the outcome of species interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号