首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many recent studies have attempted to support the hypothesis that grazing can have positive effects on plant growth and fitness. However, a recent critical survey has shown that many of these studies suffer from poor experimental design, and consequently that the hypothesis may only be tenable under very particular circumstances.  相似文献   

2.
Increasing goose population sizes gives rise to conflicts with human socioeconomic interests and in some circumstances conservation interests. Grazing by high abundances of geese in grasslands is postulated to lead to a very short and homogeneous sward height negatively affecting cover for breeding meadow birds and impacting survival of nests and chicks. We studied the effects of spring grazing barnacle geese Branta leucopsis and brent geese Branta bernicla on occupancy of extensively farmed freshwater grasslands by nesting and brood‐rearing waders on the island Mandø in the Danish Wadden Sea. We hypothesized that goose grazing would lead to a shorter grass sward, negatively affecting the field occupancy by territorial/nesting and chick‐rearing waders, particularly species preferring taller vegetation. Goose grazing led to a short grass sward (<5 cm height) over most of the island. To achieve a variation in sward height, we kept geese off certain fields using laser light. We analyzed effects of field size, sward height, mosaic structure of the vegetation, proximity to shrub as cover for potential predators, and elevation above ground water level as a measure of wetness on field occupancy by nesting and chick‐rearing waders. The analysis indicated that the most important factor explaining field occupancy by nesting redshank Tringa totanus, black‐tailed godwit Limosa limosa, oystercatcher Haematopus ostralegus and lapwing Vanellus vanellus as well as by chick‐rearing black‐tailed godwit and lapwing was short vegetation height. Distance to shrub cover and elevation were less important. Hence, despite very intensive goose grazing, we could not detect any negative effect on the field occupancy by nesting nor chick‐rearing waders, including redshank and black‐tailed godwit, which are known to favor longer vegetation to conceal their nests and hide their chicks. Possible negative effects may be buffered by mosaic structures in fields and proximity to taller vegetation along fences and ditches.  相似文献   

3.
Between December and June, six paddocks that had been contaminated naturally with infective larvae of nematode parasites of cattle, were each subjected to one of six grazing treatments. The effects of these treatments on the infectivity of the pastures were assessed by slaughter and total worm counts of calves which subsequently grazed the paddocks, and by counts of larvae on pasture samples. Grazing by sheep during autumn resulted in reduced populations of Ostertagia ostertagi and Trichostrongylus axei, both in calves and on the pasture for up to 12 months after treatment. Similar effects were noted on pasture grazed by cattle repeatedly dosed with anthelmintics, and on ungrazed pasture. There was little effect of any treatment on numbers of Cooperia oncophora. It was concluded that the level of autumn contamination was of importance in determining the numbers of O. ostertagi in the following spring and summer.  相似文献   

4.
Interactions between bacteria and protozoa in soil were studied over 2-week periods in the field and in a pot experiment. Under natural conditions the total biological activity was temporarily synchronized by a large rainfall, and in the laboratory by the addition of water to dried-out soil, with or without plants. In the field, peaks in numbers and biomass of bacteria appeared after the rain, and a peak of naked amoebae quickly followed. Of the three investigated groups—flagellates, ciliates, and amoebae—only populations of the latter were large enough and fluctuated in a way that indicated a role as bacterial regulators. The bacterial increase was transient, and the amoebae alone were calculated to be able to cause 60% of the bacterial decrease. The same development of bacteria and protozoa was observed in the pot experiment: in the presence of roots, amoebic numbers increased 20 times and became 5 times higher than in the unplanted soil. In the planted pots, the amoebic increase was large enough to cause the whole bacterial decrease observed; but in the unplanted soil, consumption by the amoebae caused only one-third of the bacterial decrease.  相似文献   

5.
Commencing in December 1970, paddocks of a uniform series of sheep pastures were grazed for 6, 12 or 24 weeks by either yearling steers is or yearling ewes. Cattle pastures were treated similarly. All ewes and steers were pre-dosed with anthelmintic.At the conclusion of alternate grazing the effectiveness of the grazing treatments was evaluated by grazing each paddock for 1 month with either ten worm-free lambs (sheep pastures) or three wormfree calves (cattle pastures). The test animals were then slaughtered for total worm counts. The grazing of sheep pastures with cattle for 6, 12 or 24 weeks from December onwards resulted in reductions in numbers of Haemonchus contortus and Trichostrongylus colubriformis in test lambs. In comparison with continuous grazing by sheep, Nematodirus spp was only reduced after 24 weeks grazing by cattle. Cattle pastures grazed by sheep for 6 weeks showed no reduction in numbers of Ostertagia ostertagi or Cooperia oncophora in test calves. However after 12 weeks with sheep, numbers of O. ostertagi though not C. oncophora were reduced and after 24 weeks of alternate grazing both these species were reduced.Calves following the 6 week sheep treatments acquired both Haemonchus contortus and Trichostrongylus colubriformis and the calves from the 12 week sheep treatment paddock also carried H. contortus. For sheep the only evidence of cross-transmission was the occurrence of small numbers of Cooperia oncophora in test lambs from the 24 week cattle grazing treatment.The results provide evidence that sequential stocking with cattle and sheep in conjunction with anthelmintic treatment is an effective management strategy for preparing parasitologically safer pastures, but further information is required to determine the optimum timing of sequential stocking in farming situations.  相似文献   

6.
Food item categorization should reduce the cost of information processing by herbivores when selecting their diet in complex environments. We assessed the ability of sheep to categorize food items by offering them ryegrass (Rg) and fescue (Fe) in pots cut tall (T) or short (S). Ewes’ preferences were tested in three binary choices, RgS-FeT, RgS-FeS and FeT-FeS, before and after aversive conditioning against RgT. After conditioning, the ewes decreased their preference for RgS, but their choice between tall and short fescue was unchanged. Thus the ewes generalized their aversion to the species but not to the sward height. Comparing the choices between the two species offered at the same height showed choices were similar between RgS and FeS here and between RgT and FeT in Ginane and Dumont (2006). We conclude that sheep can use species-based, open-ended categorization when selecting their diet, while other plant characteristics, such as sward height, are not used to define a category, despite their importance in diet selection.  相似文献   

7.
Can grazing sheep compensate for a daily foraging time constraint?   总被引:3,自引:0,他引:3  
1. Theoretical studies of large herbivore foraging assume that total daily grazing time is a key constraint on daily intake and diet choice. We experimentally tested this assumption and investigated the effects of food availability on the ability of grazing sheep to compensate for restriction of available daily grazing time.
2. Foraging behaviour, intake and diet digestibility by sheep, were measured on grass pastures in a replicated 2 × 2 factorial experiment, in which overnight access to pasture was varied (restricted overnight and continuous access) on two sward heights (5·5 and 3·0 cm), representing high and low food availability.
3. Regardless of food availability, the overnight-restricted sheep fed for almost all of the available grazing time by grazing for fewer, longer foraging bouts, but still had much shorter total daily grazing time than the continuous access sheep.
4. In response to overnight penning, the sheep had a significantly higher instantaneous rate of intake achieved mainly via larger bites. The continuous access sheep were hence not maximizing their short-term rate of intake, whilst grazing according to the daily schedule considered normal for sheep.
5. The behavioural responses to overnight food restriction were able to counteract the reduction in daily grazing time only where food availability was high. In contrast on short swards overnight grazing restriction led to a reduction in total daily intake. We suggest that the interactions between the factors considered as constraints on foraging behaviour of herbivores are, as yet, only poorly quantified.  相似文献   

8.
In low-productivity environments such as the tundra, it has been proposed that regular, multi-annual population cycles of lemmings could be driven by winter food depletion in years of peak abundance. If lemming population dynamics is controlled by food resources, we predict that (1) winter grazing should negatively impact the abundance of food plants, (2) this impact should be proportional to lemming density and (3) high lemming winter grazing pressure should result in reduced plant growth during the following summer. We tested these predictions on Bylot Island, Nunavut, Canada, where two species of lemmings are present: the brown (Lemmus trimucronatus) and collared lemming (Dicrostonyx groenlandicus). We installed 16 exclosures in their preferred wintering habitat (snowbeds) and annually sampled plant biomass inside and outside exclosures at snow melt and at peak growth during the summers of 2009–2012, covering a full population cycle. Winter grazing had no impact on total vascular plant or moss biomass at snow melt in all years. Among plant families, only Caryophyllaceae, which was uncommon, showed a decline. In moss taxa, a negative effect was found on Polytrichum in only 1 year out of three. Overall, plant regrowth during the subsequent summer showed annual variation and tended to be reduced in the 2 years of high lemming abundance. However, this could be a consequence of summer grazing. Overall, the impact of lemming winter grazing on plants was weak and short-lived, even in years of high lemming abundance. Therefore, our results are not consistent with the hypothesis that food depletion during winter was the cause of the lemming decline following peak abundance at our study site. Other factors may limit lemming populations and prevent them from reaching densities high enough to exhaust their food resources.  相似文献   

9.
10.
Interactions between traditional livestock management practices and wildlife activities are important in the conservation of many mountain ecosystems including the summer rangelands in the Spanish Central Pyrenees, where rooting by wild boar (Sus scrofa) is a large disturbance that can reduce the amount of area available to grazing livestock. This study explored the likely impact of wild boar rooting on Pyrenean grasslands. It quantified the extent of wild boar rooting in livestock grazing areas and determined whether wild boars selected or avoided areas depending on the type of livestock and stocking rates. Wild boar rooting affected 16% of livestock grazing area and occurred in sites that were grazed by cattle, rather than by sheep. In addition, a preference for areas that had intermediate stocking rates was found. The relationship between the increase in the number of wild boars and trends in livestock management suggests that the extent of wild boar rooting will increase especially in cattle grazing areas, and therefore, the area available for cattle grazing in Pyrenean mountain rangelands would decrease significantly.  相似文献   

11.
We focused on land units as landscape characteristics and selected seven typical land units on a land catena comprising two areas of southern Mongolia. Hierarchical analysis was used to test the hypothesis that a land unit’s edaphic factors could explain the differences in vegetation responses to grazing. We established the survey sites at increasing distances from a livestock camp or water point within each land unit, then analysed patterns of change in floristic and functional compositions, vegetation volume and soil properties within each land unit to reveal differences in vegetation responses to grazing. We also examined the variations in floristic and functional compositions across land units to identify the edaphic factors that may underlie these differences. Changes in vegetation and soil properties at increasing distances from a camp or water point within each land unit were into three different patterns. Ordination techniques consistently indicated that land unit groups categorised using edaphic factors corresponded to those categorised using response patterns. Our study revealed that edaphic factors were responsible for the observed landscape-scale differences in vegetation responses to grazing in the study areas. In addition, the mechanisms underlying vegetation responses to grazing may have been primarily determined by edaphic factors.  相似文献   

12.

Background and aims

Our objective was to assess the effects of long-term continuous grazing on soil enzyme activities in relation to shifts in plant litter attributes and soil resources in an arid ecosystem, considering both spatial and temporal variations.

Methods

We randomly extracted soil samples with the respective litter cover at 5 modal size plant-covered patches (PCP) and the nearest inter-canopy areas (IC) at Patagonian Monte sites with low, medium and high grazing intensity in winter and summer from 2007 to 2009. We analyzed enzyme activities (dehydrogenase, ß-glucosidase, protease, alkaline and acid phosphatase), microbial biomass-C, organic-C, total soil-N, and moisture in soil and mass and quality in plant litter. We assessed faeces density and plant cover in the field.

Results and conclusions

Grazing led to reduced grass cover, decreasing plant litter mass with increasing soluble phenolics, and reduced phosphatases, ß-glucosidase and microbial biomass-C at PCP. A localized nutrient input from animal excreta seems to promote microbial biomass-C, alkaline phosphatase and dehydrogenase activities but only at IC from the site with high grazing intensity. Plant heterogeneous distribution, plant litter quantity and quality, nutrient inputs from grazers and seasonal variation in soil moisture, also affecting soil resources and microbial biomass, modulate soil enzyme responses to long-term grazing in the arid Patagonian Monte.  相似文献   

13.
Large mammalian herbivores manifest a strong top‐down control on ecosystems that can transform entire landscapes, but their impacts have not been reviewed in the context of terrestrial carbon storage. Here, we evaluate the effects of plant biomass consumption by large mammalian herbivores (>10 kg adult biomass), and the responses of ecosystems to these herbivores, on carbon stocks in temperate and tropical regions, and the Arctic. We calculate the difference in carbon stocks resulting from herbivore exclusion using the results of 108 studies from 52 vegetation types. Our estimates suggest that herbivores can reduce terrestrial above‐ and below‐ground carbon stocks across vegetation types but reductions in carbon stocks may approach zero given sufficient periods of time for systems to respond to herbivory (i.e. decades). We estimate that if all large herbivores were removed from the vegetation types sampled in our review, increases in terrestrial carbon stocks would be up to three orders of magnitude less than many of the natural and human‐influenced sources of carbon emissions. However, we lack estimates for the effects of herbivores on below‐ground biomass and soil carbon levels in many regions, including those with high herbivore densities, and upwards revisions of our estimates may be necessary. Our results provide a starting point for a discussion on the magnitude of the effects of herbivory on the global carbon cycle, particularly given that large herbivores are common in many ecosystems. We suggest that herbivore removal might represent an important strategy towards increasing terrestrial carbon stocks at local and regional scales within specific vegetation types, since humans influence populations of most large mammals.  相似文献   

14.
The effects of two grazer species (cattle or sheep) and two flock types (single or mixed with goats) on vegetation and arthropod fauna were studied in a factorial design on eight plots which comprised two thirds of mechanically cleared heathland and one third of improved ryegrass-clover grassland. After six grazing seasons, the shrubland areas were dominated by gorse (Ulex gallii) in all treatments. Herbaceous cover was higher under mixed than under single grazing, and under sheep than under cattle grazing. Higher captures of Opiliones, Julida, Lithobiomorpha, Microcoryphia and Carabidae were recorded in shrublands than in grasslands, while the reverse was observed for Linyphiidae, Lycosidae and Hemiptera. Within shrublands, fauna responded to the flock type but not to the grazer species. More arthropod groups favoured the patchier areas with higher herbaceous biomass generated by mixed herds with goats. Within grasslands, species-specific responses to the grazer species were observed. Mixed grazing schemes which include goats within partially improved heathlands could contribute to maintain higher biodiversity levels in these marginal areas.  相似文献   

15.
Changes of agricultural practices have led to decline of semi-natural habitats sustained by traditional animal husbandry in many European regions. The abandonment of semi-natural pastures leads to increase of vascular plant biomass and subsequent decline of weak competitors such as bryophytes. Re-establishing traditional animal husbandry may potentially restore biodiversity but the success of such measures remains insufficiently known. In this study, we asked if re-establishing cattle grazing on previously abandoned grasslands will restore their bryophyte communities. The effect of cattle grazing on bryophyte communities of mesic semi-natural grasslands was studied in south-western Finland in a comparison of (i) continuously grazed pastures, (ii) previously abandoned pastures where grazing was re-established during 1990s, and (iii) abandoned pastures, where grazing had ceased during late 1960s to early 1980s. The average cover, species richness, species density and species diversity of bryophytes were significantly higher in the continuously grazed than in the abandoned grasslands. Ordination analyses revealed clear differences also in community structure between the management classes. Re-established grasslands were ecologically heterogeneous and situated in between the continuously grazed and abandoned grasslands in all characteristics, indicating variable effect of the restoration measure. Seventeen bryophyte species were recognized as significant indicators of the three grassland classes, four of which could be used as indicators of valuable grassland habitats. Although there was variation in the consequences of re-introduction of grazing, the results give evidence of positive effect of grazing on regaining bryophyte diversity of abandoned grasslands.  相似文献   

16.
Deron E. Burkepile 《Oikos》2013,122(2):306-312
‘Grazing ecosystem’ is typically used to describe terrestrial ecosystems with high densities of mammalian herbivores such as the Serengeti in East Africa or the Greater Yellowstone Ecosystem in North America. These abundant, large herbivores determine plant community dynamics and ecosystem processes. The general concepts that define grazing ecosystems also aptly describe many aquatic ecosystems, including coral reefs, seagrass beds, and lakes, where herbivores such as parrotfishes, turtles, and zooplankton have strong impacts on ecosystem processes. Here, I compare the ecology of grazing ecosystems in search of common concepts that transcend the terrestrial‐aquatic boundary. Specifically, I evaluate: 1) the feedbacks between herbivory and primary production, 2) the roles of herbivore richness and facilitation, 3) how predators and diet quality shape patterns of herbivory, and 4) how altering herbivory mediates alternative states.  相似文献   

17.
18.
Although grassland species are usually classified as grazing increasers or decreasers, the response mechanisms to herbivore action in these two groups have yet to be clarified. One such action is dung deposition. The present study tested the hypothesis that increaser species perform more efficiently than decreasers during germination and/or establishment in the presence of dung leachates. A phytotron experiment was conducted on fourteen Mediterranean grassland species from five families, with an equal number of increaser and decreaser species chosen for each family to control for phylogeny. Seeds were germinated and grown in different concentrations of cattle dung leachate. We monitored germination percentages, median germination time and root length, measured five days after germination. To analyse the response and identify potential thresholds, we fitted piecewise mixed models using family/species as nested random factors. Differences in germination parameters between the two groups peaked in favour of increasers under intermediate leachate concentrations. Root growth was also negatively affected by leachates in decreaser species and promoted in increasers. Livestock dung deposition can increase the germination and colonising performance of increasers over decreasers, and may therefore be one of the mechanisms that explain the different species composition of grazed and ungrazed environments.  相似文献   

19.
Trophic niche parameters and forage preferences of capybaraHydrochaeris hydrochaeris Linnaeus, 1766 were studied at three areas of east-central Argentina: Lower Delta Islands (LDI), only capybara present; Puerto Constanza (PC), capybara and cattle, and Villaguay (VI), capybara, cattle and sheep. Significant correlation was found in the annual botanical composition of capybara faeces at LDI and PC, but no correlation was found between faecal composition at these two areas and those at VI. The narrowest trophic niche corresponded to LDI, while the widest corresponded to VI, with significant differences in the values among the three areas. Capybara consumedCarex riparia, Cynodon dactylon andPanicum grumosum in LDI, andP. milioides in VI in proportion greater than availability. Three and eight food items were consumed less than availability in VI and PC, respectively. The greater the species number and density of livestock animals, the more generalist the behavior of capybara, possibly due to direct interaction in the use of grazing resources. Changes in availability of foraging species may influence the capybara’s preference patterns and the consumption of suboptimal feeding items may indicate a greater pressure on foraging resources in the areas where capybaras share their habitat with livestock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号