首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell cycle inhibitor p57Kip2 induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases. p57, although active as a cyclin A-CDK2 inhibitor, is largely unfolded or intrinsically disordered as shown by circular dichroism and fluorescence spectra characteristic of an unfolded protein and a hydrodynamic radius consistent with an unfolded structure. In addition, the N-terminal domain of p57 is both functionally independent as a cyclin A-CDK2 inhibitor and unstructured, as demonstrated by circular dichroism and fluorescence spectra indicative of unfolded proteins, a lack of 1H chemical shift dispersion and a hydrodynamic radius consistent with a highly unfolded structure. The amino acid compositions of full-length p57 and the excised QT domain of p57 exhibit significant deviations from the average composition of globular proteins that are consistent with the observed intrinsic disorder. However, the amino acid composition of the CDK inhibition domain of p57 does not exhibit such a striking deviation from the average values observed for proteins, implying that a general low level of hydrophobicity, rather than depletion or enrichment in specific amino acids, contributes to the intrinsic disorder of the excised p57 CDK inhibition domain.  相似文献   

2.
Unfolding of the immunoglobulin binding domain B1 of streptococcal protein G (GB1) was induced by guanidine hydrochloride (GdnHCl) and studied by circular dichroism, steady-state, and time-resolved fluorescence spectroscopy. The fluorescence methods employed the single tryptophan residue of GB1 as an intrinsic reporter. While the transitions monitored by circular dichroism and steady-state fluorescence coincided with each other, the transitions followed by dynamic fluorescence were markedly different. Specifically, fluorescence anisotropy data showed that a relaxation spectrum of tryptophan contained a slow motion with relaxation times of 9 ns in the native state and 4 ns in the unfolded state in 6 M GdnHCl. At intermediate GdnHCl concentrations of 3.8-4.2 M, however, the slow relaxation time increased to 18 ns. The fast nanosecond motion had an average time of 0.8 ns and showed no dependence on the formation of native structure. Overall, dynamic fluorescence revealed two preliminary stages in GB1 folding, which are equated with the formation of local structure in the beta(3)-strand hairpin and the initial collapse. Both stages exist without alpha-helix formation, i. e., before the appearance of any ordered secondary structure detectable by circular dichroism. Another stage in GB1 folding might exist at very low ( approximately 1 M) GdnHCl concentrations.  相似文献   

3.
The unfolded state of a protein is an ensemble of a large number of conformations ranging from fully extended to compact structures. To investigate the effects of the difference in the unfolded-state ensemble on protein folding, we have studied the structure, stability, and folding of "circular" dihydrofolate reductase (DHFR) from Escherichia coli in which the N and C-terminal regions are cross-linked by a disulfide bond, and compared the results with those of disulfide-reduced "linear" DHFR. Equilibrium studies by circular dichroism, difference absorption spectra, solution X-ray scattering, and size-exclusion chromatography show that whereas the native structures of both proteins are essentially the same, the unfolded state of circular DHFR adopts more compact conformations than the unfolded state of the linear form, even with the absence of secondary structure. Circular DHFR is more stable than linear DHFR, which may be due to the decrease in the conformational entropy of the unfolded state as a result of circularization. Kinetic refolding measurements by stopped-flow circular dichroism and fluorescence show that under the native conditions both proteins accumulate a burst-phase intermediate having the same structures and both fold by the same complex folding mechanism with the same folding rates. Thus, the effects of the difference in the unfolded state of circular and linear DHFRs on the refolding reaction are not observed after the formation of the intermediate. This suggests that for the proteins with close termini in the native structure, early compaction of a protein molecule to form a specific folding intermediate with the N and C-terminal regions in close proximity is a crucial event in folding. If there is an enhancement in the folding reflecting the reduction in the breadth of the unfolded-state ensemble for circular DHFR, this acceleration must occur in the sub-millisecond time-range.  相似文献   

4.
L King  S S Lehrer 《Biochemistry》1989,28(8):3498-3502
Rabbit skeletal myosin rod, which is the coiled-coil alpha-helical portion of myosin, contains two tryptophan residues located in the light meromyosin (LMM) portion whose fluorescence contributes 27% to the fluorescence of the entire myosin molecule. The temperature dependence of several fluorescence parameters (quantum yield, spectral position, polarization) of the rod and its LMM portion was compared to the thermal unfolding of the helix measured with circular dichroism. Rod unfolds with three major helix unfolding transitions: at 43, 47, and 53 degrees C, with the 43 and 53 degrees C transitions mainly located in the LMM region and the 47 degrees C transition mainly located in the subfragment 2 region. The fluorescence study showed that the 43 degrees C transition does not involve the tryptophan-containing region and that the 47 degrees C transition produces an intermediate with different fluorescence properties from both the completely helical and fully unfolded states. That is, although the fluorescence of the 47 degrees C intermediate is markedly quenched, the tryptophyl residues do not become appreciably exposed to solvent until the 53 degrees C transition. It is suggested that although the intermediate that is formed in the 47 degrees C transition contains an extensive region which is devoid of alpha-helix, the unfolded region is not appreciably solvated or flexible. It appears to have the properties of a collapsed nonhelical state rather than a classical random coil.  相似文献   

5.
Equilibrium unfolding-refolding processes of active and proteolytically modified alpha 1-proteinase inhibitor induced by guanidinium chloride were studied. Spectroscopic methods of ultraviolet absorption, fluorescence emission and circular dichroism were used. The functional inhibitor unfolds following a multistate process: a first transition (midpoint at 0.6 M guanidinium chloride) was observed whatever the method used and was attributed to a limited conformational modification of the region including the two tryptophan residues. At higher denaturant concentrations, two other transitions were observed, one in fluorescence (midpoint at 1.7 M guanidinium chloride), attributed to the unfolding of the polypeptide chain in the same region and the other one, observed in circular dichroism and in ultraviolet absorption (midpoint at 2.3 M guanidinium chloride), leading to the totally unfolded protein. Evidence for several intermediates was also obtained with the proteolytically modified inhibitor. If total unfolding is considered, the modified inhibitor was found to be more stable towards the denaturant than the functional form (obtained at 5.5 M and 3.5 M guanidinium chloride, respectively). The unfolding irreversibility observed was attributed to the C-terminal fragment Ser359-Lys394 associated with the main chain of the cleaved inhibitor.  相似文献   

6.
The denaturation of the trp repressor from Escherichia coli has been studied by fluorescence, circular dichroism and proton magnetic resonance spectroscopy. The dependences of the fluorescence emission of the two tryptophan residues on the concentration of urea are not identical. The dependence of the quenching of tryptophan fluorescence by iodide as a function of urea concentration also rules out a two-state transition. The circular dichroism at 222 nm decreases in two phases as urea is added. Normalised curves for different residues observed by 1H NMR also do not coincide, and require the presence of at least one stable intermediate. Analysis of the dependence of the denaturation curves on the concentration of protein indicate that the first transition is a partial unfolding of the dimeric repressor, resulting in a loss of about 25% of the helical content. The second transition is the dissociation and unfolding of the partially unfolded dimer. At high concentrations of protein (500 microM) about 73% of the repressor exists as the intermediate in 4 M urea. The apparent dissociation constant is about 10(-4) M; the subunits are probably strongly stabilised by the subunit interaction. The native repressor is stable up to at least 70 degrees C, whereas the intermediate formed at 4 M urea can be denatured reversibly by heating (melting temperature approximately 60 degrees C, delta H approximately 230 kJ/mol).  相似文献   

7.
alpha-1-antitrypsin, the major inhibitor of proteolytic enzymes in human serum, was isolated from normal individuals (protease inhibitor type MM) and from those with an inherited deficiency (protease inhibitor type ZZ) of circulatory protein. The two proteins were compared by circular dichroism spectroscopy, and by fluorescence quenching experiments using anionic (I-), and neutral (acrylamide) probes. Both proteins share a similar secondary structure, i.e. approximately 45--50% alpha-helix and 15--20% beta-structure. Evidence was accumulated to show that the microenvironment in the vicinity of the three tryptophanyl residues is altered in Z form as compared to the M form as shown by (a) the absence of the positive dichroic band in the region 290--300 nm of the circular dichroism spectra, (b) a greater than 50% increase in quantum yield in the tryptophanyl fluorescence emission spectra, (c) an increased accessibility of tryptophan to quenching by iodide, and (d) acrylamide quenching experiments which indicate that all tryptophanyl residues in the Z protein are quenched equally or that quenching is dominated by a single residue, while in the M protein, heterogeneous quenching occurs. The potential significance of these findings in terms of alpha-1-antitrypsin deficiency state are discussed.  相似文献   

8.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

9.
Using environment-sensitive fluorescence of 1-anilinonaphthalene-8-sulfonic acid, polarization of fluorescein 5'-isothiocyanate-labeled FtsZ, and far-UV circular dichroism spectroscopy, the chemical unfolding of FtsZ was found to proceed through two steps. The first step of the urea-induced unfolding produced an intermediate, which then unfolded at higher concentrations of urea. The intermediate state contains native-like secondary structure and much less tertiary structure compared with the native state. It is distinct from the native state as well as from the unfolded state. Similar to urea-induced unfolding of FtsZ, thermal unfolding of FtsZ also occurs in two steps. The midpoints for the first and second thermal unfolding transitions were found to be 38 +/- 4 and 77 +/- 5 degrees C, respectively. Further, the functional properties of FtsZ are extremely sensitive to urea, guanidium chloride, and sodium dodecyl sulfate. For example, 50% inhibition of the FtsZ assembly and GTP hydrolysis occurred at 0.1 and 0.2 m of urea, respectively. FtsZ lost its functional properties before any significant perturbation in the secondary or tertiary structure was detected by using several fluorescence techniques and far UV-CD indicating preferential local unfolding of the functional region(s). In addition, the unfolded FtsZ regains its ability to polymerize fully upon removal of urea. The data taken together suggest that FtsZ unfolds reversibly through a multistep process, and local responses that inhibit functional properties precede the global transition of FtsZ to the unfolded state.  相似文献   

10.
The pure cinnamomin A-chain is unstable compared to that in the mixture of A- and B-chain or in intact cinnamomin molecule either being stored at 4 degrees C or being heated. When being heated at 45 degrees C for 20min, the A-chain generates partially unfolded intermediate and loses its tertiary structure as monitored by circular dichroism (CD) and tryptophan fluorescence, thus resulting in the inactivity of its RNA N-glycosidase albeit it retains most of its secondary structures. This partially unfolded intermediate is sensitive to protease, exhibiting property of a molten globule. The changes in conformation and activity are irreversible upon cooling. The partially unfolded intermediate can fully restore its RNA N-glycosidase activity in the presence of cinnamomin B-chain. The phenomenon, that the cinnamomin B-chain mediates the refolding of partially unfolded A-chain, probably plays an important role in the intracellular transport of the cytotoxic protein, i.e., keeping the structural stability of A-chain and refolding partially unfolded A-chain that occasionally appeared in the process of intracellular transport, to avoid the destiny of proteolysis that occurs in most denatured proteins in cell.  相似文献   

11.
The interaction of apomyoglobin and its mutant forms with phospholipid membranes was studied using tryptophan fluorescence and circular dichroism in the far UV region. It is shown that a negatively charged phospholipid membrane can have a dual effect on the structure of protein molecule upon their interaction. On the one hand, the membrane induces denaturation of the protein native structure to its intermediate state, acting as a moderate denaturing agent. On the other hand, it can stabilize the structure of unfolded protein to the same intermediate state, acting as a moderate structuring agent. The kinetics of interaction between apomyoglobin and its mutant forms and the phospholipid membrane depends on the membrane surface charge. Here the interaction rate depends on the concentration of phospholipids vesicles and stability of protein molecule, which increase with a decrease in the latter. The roles of these factors in the folding of membrane proteins and the choice of the targeted delivery pathways for protein drugs are discussed.  相似文献   

12.
The refolding course and intermediate of guanidine hydrochloride (GuHCl)-denatured arginine kinase (AK) were studied in terms of enzymatic activity, intrinsic fluorescence, 1-anilino-8-naphthalenesulfonte (ANS) fluorescence, and far-UV circular dichroism (CD). During AK refolding, the fluorescence intensity increased with a significantly blue shift of the emission maximum. The molar ellipticity of CD increased to close to that of native AK, as compared with the fully unfolded AK. In the AK refolding process, 2 refolding intermediates were observed at the concentration ranges of 0.8-1.0 mol/L and 0.3-0.5 mol GuHCl/L. The peak position of the fluorescence emission and the secondary structure of these conformation states remained roughly unchanged. The tryptophan fluorescence intensity increased a little. However, the ANS fluorescence intensity significantly increased, as compared with both the native and the fully unfolded states. The first refolding intermediate at the range of 0.8-1.0 mol GuHCl/L concentration represented a typical "pre-molten globule state structure" with inactivity. The second one, at the range of 0.3-0.5 mol GuHCl/L concentration, shared many structural characteristics of native AK, including its secondary and tertiary structure, and regained its catalytic function, although its activity was lower than that of native AK. The present results suggest that during the refolding of GuHCl-denatured AK there are at least 2 refolding intermediates; as well, the results provide direct evidence for the hierarchical mechanism of protein folding.  相似文献   

13.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS.  相似文献   

14.
Experimental approaches, including circular dichroism, small angle X-ray scattering, steady-state fluorescence, and fluorescence energy transfer, were applied to study the 3D-structure of apomyolgobin in different conformational states. These included the native and molten globules, along with either less ordered conformations induced by the addition of anions or completely unfolded states. The results show that the partially folded forms of apomyoglobin stabilized by KCl and/or Na(2)SO(4) under unfolding conditions (pH 2) exhibit a significant amount of secondary structure (circular dichroism), low packing density of protein molecules (SAXS), and native-like dimensions of the AGH core (fluorescence energy transfer). This finding indicates that a native-like tertiary fold of the polypeptide chain, i.e., the spatial organization of secondary structure elements, most likely emerges prior to the formation of the molten globule state.  相似文献   

15.
The folding kinetics of G-CSF were determined by trp-fluorescence and far-UV circular dichroism. Folding and unfolding was achieved by rapid dilution and mixing of the denaturant, GdnHCl. G-CSF is a four-helical bundle protein with two long loops between the first and second helices and between the third and fourth helices. The entire conformational change expected by fluorescence was observed by stopped-flow technology, but due to rapid refolding kinetics only a portion was observed by circular dichroism. G-CSF contains two trp residues, and their contribution to the fluorescent-detected kinetics were deciphered through the use of single-site trp mutants. The trp moieties are probes of the local conformation surrounding their environment. One trp at residue 118 is located within the third helix while the other trp at residue 58 is part of the long loop between the first and second helices. The refolding results were most consistent with the following mechanism: U <--> I(1) <--> I(2) <--> N; where U represents the unfolded protein, I(1) represents intermediate state 1, I(2) represents intermediate state 2, and N represents the native state. I(1) is characterized as having approximately one-half of the native-like helical structure and none of the native-like fluorescence. I(2) has 100% of the native helical structure and most of the trp-118 and little of the trp-58 native-like fluorescence. Thus refolding occurs in distinct stages with half of the helix forming first followed by the remaining half of the helix including the third helix and finally the loop between the first and second helices folds.  相似文献   

16.
Apocytochrome c, which in aqueous solution is largely unstructured, acquires a highly alpha-helical structure upon interaction with lipid. The alpha-helix content induced in apocytochrome c depends on the lipid system, and this folding process is driven by both electrostatic and hydrophobic lipid-protein interactions. The folding kinetic mechanism of apocytochrome c induced by zwitterionic micelles of lysophosphatidylcholine (L-PC), predominantly driven by hydrophobic lipid-protein interactions, was investigated by fluorescence stopped-flow measurements of Trp 59 and fluorescein-phosphatidylethanolamine-(FPE) labeled micelles, in combination with stopped-flow far-UV circular dichroism. It was found that formation of the alpha-helical structure of apocytochrome c precedes membrane insertion. The unfolded state in solution (U(W)) binds to the micelle surface in a helical conformation (I(S)) and is followed by insertion into the lipid micelle, i.e., formation of the final helical state H(L). Binding of apocytochrome c to the lipid micelle (U(W) --> I(S)) is concurrent with formation of a large fraction (75-100%, depending on lipid concentration) of the alpha-helical structure of the final lipid-inserted state H(L). The highly helical intermediate I(S) is formed on the time scale of 3-12 ms, depending on lipid concentration, and inserts into the lipid micelle (I(S) --> H(L)) in the time range of approximately 200 ms to >1 s, depending on lipid-to-protein ratio. The final lipid-inserted helical state H(L) in L-PC micelles has an alpha-helix content approximately 65% of that of cytochrome c in solution and has no compact stable tertiary structure as revealed by circular dichroism results.  相似文献   

17.
Noland BW  Dangott LJ  Baldwin TO 《Biochemistry》1999,38(49):16136-16145
Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C-terminal subdomain and the second transition represents the unfolding of a more stable N-terminal subdomain. Comparison of the structural properties of the unfolding intermediate using spectroscopic probes and limited proteolysis of the alpha subunit with those of the alphabeta heterodimer suggested that the unfolding pathway of the alpha subunit is the same, whether it is in the form of the free subunit or in the heterodimer.  相似文献   

18.
Thermal stability of Escherichia coli Fpg protein was studied using far-UV circular dichroism and intrinsic fluorescence. Experimental data indicate that Fpg irreversibly aggregates under heating above 35 degrees C. Heat aggregation is preceded by tertiary conformational changes of Fpg. However, the secondary structure of the fraction that does not aggregate remains unchanged up to approximately 60 degrees C. The kinetics of heat aggregation occurs with an activation enthalpy of approximately 21 kcal/mol. The fraction of monomers forming aggregates decreases with increasing urea concentration, with essentially no aggregation observed above approximately 3 M urea, suggesting that heat aggregation results from hydrophobic association of partially unfolded proteins. With increasing urea concentration, Fpg unfolds in a two-state reversible transition, with a stability of approximately 3.6 kcal/mol at 25 degrees C. An excellent correlation is observed between the unfolded fraction and loss of activity of Fpg. A simple kinetic scheme that describes both the rates and the extent of aggregation at each temperature is presented.  相似文献   

19.
The acid-induced unfolding of bovine liver glutamate dehydrogenase (GDH) was studied using various spectroscopic methods such as far- and near-UV circular dichroism (CD), intrinsic and 1-anilino naphthalene-8-sulphonate (ANS) extrinsic fluorescence spectroscopy, light scattering and fluorescence quenching in 20 mM mixed buffer at various pHs. CD spectra show that at pH 3.5, GDH retains its secondary structure substantially, whereas its tertiary structure content is reduced considerably. Intrinsic fluorescence of GDH and ANS binding suggest that, at pH 3.5, the hydrophobic surface of enzyme is more exposed in comparison to the native form. Acrylamide quenching indicates more exposure of tryptophan residues of enzyme at pH 3.5 in comparison to pH 7.5. Another partially unfolded intermediate was detected at pH 5.0, which with its ANS binding capacity lies between the pH 3.5 intermediate and the native form of the enzyme. Gel filtration results revealed that the enzyme at pH 3.5 is dissociated into trimeric species whereas it exists as hexamer at pH 7.5 and 5.0. All the data taken together suggest the existence of two partially unfolded states of GDH at moderate acidic pHs which may be considered as molten and pre-molten globule-like states.  相似文献   

20.
The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号