首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined protein kinase C activity and hormone secretion in aldosteronoma cells derived from adrenocortical glomerulosa cells and in adjacent adrenal cells containing adrenocortical fasciculata-reticularis cells. When aldosteronoma cells were stimulated with ACTH or angiotensin II, protein kinase C activity gradually decreased in cytosol whereas it increased in membrane. Coincident with the changes of protein kinase C activity, there was enhancement of secretion of aldosterone. On the other hand, incubation of adjacent adrenal fasciculata-reticularis cells with ACTH induced cortisol secretion and an increase in cytosolic protein kinase C activity, accompanied by a decrease in the enzyme activity in membrane. Upon stimulation with angiotensin II, adjacent adrenal fasciculata-reticularis cells did not secrete cortisol and no significant changes of protein kinase C activities were observed in either cytosolic or membrane fractions. These results indicate that both ACTH and angiotensin II stimulate aldosterone secretion and cause translocation of protein kinase C from cytosol to membranes in aldosteronoma cells, whereas, in fasciculata-reticularis cells, only ACTH stimulates cortisol secretion and this is associated with translocation of protein kinase C in the opposite direction, viz., from membrane to cytosol.  相似文献   

2.
A somatic cell genetic approach has been used to evaluate the role of cyclic AMP-dependent protein kinase in ACTH action on adrenal steroidogenesis. A mutant clone, 8BrcAMPr-1, previously was isolated from an ACTH-sensitive adrenocortical tumor cell line (clone Y1) following mutagenesis and selective growth in 8-bromoadenosine 3′, 5′-monophosphate. This study demonstrates that the 8BrcAMP4-1 cells have an altered cyclic AMP-dependent protein kinase. The protein kinase in the cytosol of the mutant characteristically requires, for half-maximal activity, concentrations of cyclic AMP 7-fold higher than those required by the enzyme in preparations from the parent. The cytosolic cyclic AMP-dependent protein kinases of Y1 and 8BrcAMPr-1 cells chromatograph similarly on columns of DEAE-cellulose. From each cell line, a major peak of activity (≥ 70% of recovered activity), designated as Peak I, elutes with 0.04–0.06 M NaCl; a second peak of activity, designated as Peak II, elutes with 0.12–0.14 M NaCl. Protein kinase activity in the Peak I fraction of mutant cells has a decreased apparent affinity (4-fold) for cyclic AMP relative to the corresponding fraction of parental Y1 cells. The protein kinase activities present in Peak II fractions from Y1 and mutant cells are indistinguishable. The protein kinase mutant exhibits poor steroidogenic responses to added ACTH and cyclic AMP; and as shown previously does not display the growth arrest and morphological changes produced in Y1 by these agents. These results suggest that cyclic AMP-dependent protein kinase is important in the regulation of adrenal steroidogenesis, morphology and growth by ACTH.  相似文献   

3.
Sphingosine inhibited protein kinase C activity and phorbol dibutyrate binding. When the mechanism of inhibition of activity and phorbol dibutyrate binding was investigated in vitro using Triton X-100 mixed micellar methods, sphingosine inhibition was subject to surface dilution; 50% inhibition occurred when sphingosine was equimolar with sn-1,2-dioleoylglycerol (diC18:1) or 40% of the phosphatidylserine (PS) present. Sphingosine inhibition was modulated by Ca2+ and by the mole percent of diC18:1 and PS present. Sphingosine was a competitive inhibitor with respect to diC18:1, phorbol dibutyrate, and Ca2+. Increasing levels of PS markedly reduced inhibition by sphingosine. Since protein kinase C activity shows a cooperative dependence on PS, the kinetic analysis of competitive inhibition was only suggestive. Sphingosine inhibited phorbol dibutyrate binding to protein kinase C but did not cause protein kinase C to dissociate from the mixed micelle surface. Sphingosine addition to human platelets blocked thrombin and sn-1,2-dioctanoylglycerol-dependent phosphorylation of the 40-kDa (47 kDa) dalton protein. Moreover, sphingosine was subject to surface dilution in platelets. The mechanism of sphingosine inhibition is discussed in relation to a previously proposed model of protein kinase C activation. The possible physiological role of sphingosine as a negative effector of protein kinase C is suggested and a plausible cycle for its generation is presented. The potential physiological significance of sphingosine inhibition of protein kinase C is further established in accompanying papers on HL-60 cells (Merrill, A. H., Jr., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., Kinkade, J. M., Jr. (1986) J. Biol. Chem. 261, 12010-12615) and human neutrophils (Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., Jr., and Lambeth, J. D. (1986) J. Biol. Chem. 261, 12616-12623). These results also suggest that sphingosine will be a useful inhibitor for investigating the function of protein kinase C in vitro and in living cells.  相似文献   

4.
A cAMP-resistant mutant (Kin-8) isolated from Y1 mouse adrenocortical tumor cells harbors a specific lesion in the regulatory subunit of the type 1 cAMP-dependent protein kinase. This mutant also is resistant to the effects of corticotropin and cAMP on steroidogenesis, growth and morphology, suggesting an obligatory role for the protein kinase in regulation of adrenocortical functions. In this study, the cAMP-resistant phenotype of the Kin-8 mutant was reverted by transformation with DNA from cAMP-responsive Y1 cells, and the biochemical basis of the transformation was explored. Initially, Y1 mouse adrenocortical tumor cells were evaluated for their competence as recipients in DNA-mediated transformation experiments, by measuring their ability to incorporate and express a bacterial gene (neo) encoding resistance to neomycin. Y1 cells were transfected with the plasmid pSV2-neo (an SV40-neo hybrid vector designed for expression in animal cells) and screened for resistance to the neomycin analog, G418. Neomycin-resistant transformants were recovered from Y1 cells at a frequency of approximately one per 10(3) cells per 10 micrograms of DNA, and had specific neo sequences integrated into their high molecular weight (mw) DNA. The Y1 mutant, Kin-8, then was transformed with pSV2-neo DNA plus high mw DNA prepared from cAMP-responsive Y1 cells. Cells competent for transformation were recovered by selective growth in the neomycin analog G418, and these transformants were screened for recovery of morphological responses to cAMP. Several colonies capable of rounding up in the presence of cAMP were recovered after transformation with DNA from Y1 cells. These transformants also recovered the ability to round up in the presence of corticotropin, and were able to respond to both corticotropin and cAMP with increased steroidogenesis. Transformants generated from either Y1 or Kin-8 cells were unstable. Y1 cells lost resistance to neomycin when grown in the absence of G418 at a frequency of 4% per generation. Similarly, Kin-8 transformants lost their sensitivity to cAMP in subsequent culture passages. In some of the cAMP-responsive transformants, cAMP-dependent protein kinase activity was recovered and approached the activity seen in cAMP-responsive Y1 cells. The recovery of a normal protein kinase by transformation appeared to have been sufficient to reverse the cAMP-resistant phenotype of Kin-8 cells. In other cAMP-responsive transformants, protein kinase activity was not appreciably affected by cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
Phorbol 12-myristate 13-acetate (PMA) induces time-dependent changes in protein kinase C subcellular distribution and enzymatic activity in the human osteosarcoma cell line SaOS-2. Short (less than 60 min) incubations with PMA caused decreased cytosolic enzyme activity and a concomitant increase in particulate protein kinase; after 3 h, particulate protein kinase C activity also declined to reach less than 10% of basal activity by 24 h (Krug, E., and Tashjian, Jr., A. H., (1987) Cancer Res. 47, 2243-2246). In order to determine whether the loss in enzyme activity was due to decreased enzyme protein, Western blot analyses were performed using a polyclonal antibody against protein kinase C raised in rabbits. This approach confirmed the previously reported time-related changes: 80-kDa immunoreactive protein kinase C initially translocated from the cytosol to the particulate cell fraction and later disappeared completely from the particulate fraction. Loss of protein kinase C enzymatic activity thus results from actual loss of the 80-kDa protein; we found no evidence for generation of a calcium/phospholipid-independent protein kinase C-like form of the enzyme. Membrane association was confirmed by immunoprecipitation experiments using [35S]methionine-labeled cells. Brief exposure to PMA caused a marked loss in the [35S]methionine-labeled cytosolic protein kinase C band and an increase in the labeled particulate band. Protein kinase C immunoprecipitated from cells treated with PMA for 14 h displayed an increase in [35S]methionine label despite a greater than 80% loss of enzyme activity. The high specific radioactivity of the remaining 80-kDa protein leads us to conclude that long term treatment with PMA causes an increase in the rate of protein kinase C synthesis accompanied by a still greater increase in the rate of enzyme degradation in SaOS-2 cells.  相似文献   

7.
The mitogen-activated protein (MAP) kinases, a family of 40-45-kDa kinases whose activation requires both tyrosine and threonine/serine phosphorylations, are suggested to play key roles in various phosphorylation cascades. A previous study of Krebs and co-workers (Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) J. Biol. Chem. 266, 4220-4227) detected an activity in epidermal growth factor (EGF)-stimulated 3T3 cells that can stimulate inactive MAP kinases. We observed this activity in rat 3Y1 cells treated with various mitogenic factors and in PC12 cells treated with nerve growth factor (NGF). Its kinetics of activation and deactivation following EGF or NGF stimulation roughly paralleled that of MAP kinase. The MAP kinase activator required the presence of ATP and a divalent cation such as Mn2+ and Mg2+ and was inactivated by phosphatase 2A treatment in vitro. This activator has been isolated from EGF-stimulated 3Y1 cells by sequential chromatography and identified as a 45-kDa monomeric protein. It was able to activate mammalian and Xenopus MAP kinases in vitro and was very similar to Xenopus M phase MAP kinase activating factor, which was purified previously from mature oocytes (Matsuda, S., Kosako, H., Takenaka, K., Moriyama, K., Sakai, H., Akiyama, T., Gotoh, Y., and Nishida, E. (1992) EMBO J. 11, 973-982), in terms of its functional, immunological, and physicochemical properties. Thus, the same or a similar upstream activating factor may function in mitogen-induced and M phase-promoting factor-induced MAP kinase activation pathways.  相似文献   

8.
We examined phospholipid/calcium-dependent protein kinase (protein kinase C) activity and amylase secretion in isolated pancreatic acinar cells, when exposed to caerulein or carbachol. Upon stimulation with 10(-10) M caerulein or 10(-6) M carbachol cytosolic protein kinase C activity was increased in accordance with amylase secretion. Effect of carbachol on increase in membrane-associated protein kinase C activity was maximal at 10(-6) M where the rate of amylase secretion was highest. On the other hand, caerulein showed the maximal secretion of amylase at 10(-9) M, but the activity of the protein kinase C associated with membranes increased progressively with increasing concentration of caerulein. These results indicate different profiles of redistribution of protein kinase C upon stimulation of pancreatic acinar cells with carbachol or caerulein, and they were discussed in terms of amylase secretion.  相似文献   

9.
We have previously reported that steroidogenesis is dramatically reduced in mouse Y1 adrenocortical cells which express the human apolipoprotein E gene (Y1-E cells). This suppression results in part from inhibition of cAMP-mediated events. In this report we have examined the expression of protein kinase C (PKC) in the Y1-E cell lines. Total cellular PKC activity in vitro is increased 3-5-fold in the Y1-E cell lines. PKC activity in the particulate and cytosolic fractions is increased to the same relative extent. Increased PKC activity reflects increased levels of PKC mRNA, as determined by Northern blot analysis, and PKC protein, as determined by immunoblot analysis. Increased expression of PKC in the Y1-E cell lines is accompanied by a 2-3-fold increase in diacylglycerol, an in vivo activator of PKC. To determine the contribution of elevated PKC expression to the Y1-E cell phenotype, we utilized the PKC inhibitors, staurosporine and calphostin C. Upon treatment with staurosporine or calphostin C, expression of P450-cholesterol side chain cleavage mRNA is increased severalfold to a level equal to, or greater than, basal expression in the Y1-neo control cell line. Treatment with calphostin C also results in recovery of steroidogenesis in the Y1-E cells to a level comparable to the basal level observed in the Y1-neo control cell line. These results indicate that increased expression of PKC in the Y1-E cell lines decreases basal steroidogenesis by suppressing P450-cholesterol side chain cleavage mRNA expression. Inhibition of PKC, however, does not reverse the block in cAMP-stimulated steroidogenesis in Y1-E cells, suggesting that the pleiotropic effects of apoE expression are not mediated entirely through altered PKC expression.  相似文献   

10.
Protein kinase C from small intestine epithelial cells   总被引:1,自引:0,他引:1  
Protein kinase C activity has been identified in cytosolic and membrane fractions from rat and rabbit small intestine epithelial cells. The cytosolic fraction comprised about the 75% of total activity. Protein kinase C activity was resolved from other protein kinase activities by ion exchange chromatography. Phosphatidylserine or phosphatidylinositol were required for protein kinase C to be active. In addition, the activity was enhanced by the presence of a diacylglycerol. Diolein and dimyristin were the most effective (13-14 fold activation). In the presence of phosphatidylserine and diolein, the Ka for activation by Ca2+ was 10(-7)M. The phorbol ester TPA substituted for diacylglycerol in activating protein kinase C. Brush border and basolateral membranes contained protein kinase C activity, although the specific activity of the basal lateral membranes was four-fold higher than the specific activity of the brush border membranes. The presence of PKC in small intestine epithelial cells might have important implications in the Ca2+ mediated control of ionic transport in this tissue.  相似文献   

11.
Many stimulators of prostaglandin production are thought to activate the Ca2+- and phospholipid-dependent protein kinase first described by Nishizuka and his colleagues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J. Biol. Chem. 254, 3692-3695. In this paper we report evidence that the activation of protein kinase C caused by 12-O-tetradecanoylphorbol-13-acetate (TPA) is involved in the increased prostaglandin production induced by 12-O-tetradecanoylphorbol-13-acetate in Madin-Darby canine kidney (MDCK) cells. We have shown that TPA activates protein kinase C in MDCK cells with similar dose response curve as observed for TPA induction of arachidonic acid release in MDCK cells. Activation of protein kinase C was associated with increased phosphorylation of proteins of 40,000 and 48,000 daltons. We used two compounds (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OMe) and 1-(5-isoquinolinesulfonyl)piperazine) known to inhibit protein kinase C by different mechanisms to further examine if activation of protein kinase C was involved in the increased synthesis of prostaglandins in TPA-treated MDCK cells. We found that both compounds inhibited protein kinase C partially purified from MDCK cells and that ET-18-OMe inhibited the phosphorylation of proteins by protein kinase C in the intact cells. Addition of either compound during or after TPA treatment decreased both release of arachidonic acid from phospholipids and prostaglandin synthesis. Release of [3H]arachidonic acid from phosphatidylethanolamine in TPA-treated cells was blocked by ET-18-OMe or 1-(5-isoquinolinesulfonyl)piperazine addition. However, arachidonic acid release stimulated by A23187 is not blocked by Et-18-OMe. When assayed in vitro, treatment of cells with Et-18-OMe did not prevent the enhanced conversion of arachidonic acid into prostaglandins induced by pretreatment of cells with TPA. Our results suggest that the stimulation of phospholipase A2 activity by TPA occurs via activation of protein kinase C by TPA.  相似文献   

12.
It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.  相似文献   

13.
Permeabilized adrenal chromaffin cells secrete catecholamines by exocytosis in response to micromolar calcium concentrations. Recently, we have demonstrated that chromaffin cells permeabilized with digitonin progressively lose their capacity to secrete due to the release of certain cytosolic proteins essential for exocytosis (Sarafian T., D. Aunis, and M. F. Bader. 1987. J. Biol. Chem. 34:16671-16676). Here we show that one of the released proteins is calpactin I, a calcium-dependent phospholipid-binding protein known to promote in vitro aggregation of chromaffin granules at physiological micromolar calcium levels. The addition of calpactin I into digitonin- or streptolysin-O-permeabilized chromaffin cells with reduced secretory capacity as a result of the leakage of cytosolic proteins partially restores the calcium-dependent secretory activity. This effect is specific of calpactin I since other annexins (p32, p37, p67) do not stimulate secretion at similar or higher concentrations. Calpactin I requires the presence of Mg-ATP, suggesting that a phosphorylating step may regulate the activity of calpactin. Calpactin is unable to restore the secretory activity in cells which have completely lost their cytosolic protein kinase C or in cells having their protein kinase C inhibited by sphingosine or downregulated by long-term incubation with TPA. In contrast, calpactin I prephosphorylated in vitro by purified protein kinase C is able to reconstitute secretion in cells depleted of their protein kinase C activity. This stimulatory effect is also observed with thiophosphorylated calpactin I which is resistant to cellular phosphatases or with phosphorylated calpactin I introduced into cells in the presence of microcystin, a phosphatase inhibitor. These results suggest that calpactin I is involved in the exocytotic machinery by a mechanism which requires phosphorylation by protein kinase C.  相似文献   

14.
The flavonoid quercetin exhibited a biphasic effect on calcium and phospholipid-dependent protein kinase (protein kinase C) activity from rat brain and pig thyroid. At a low concentration (10(-7) M) quercetin stimulated the enzyme activity whereas at higher concentrations quercetin was inhibitory. By contrast the synthetic penta-0-ethylquercetin stimulated protein kinase C activity in a dose-dependent manner. When fresly dispersed pig thyroid cells were treated with penta-0-ethylquercetin or 12-0-tetradecanoylphorbol 13-acetate (TPA), a 50% decrease of the cytosolic protein kinase C activity was observed. These results suggest that the lipophilicity as well as other structural determinants may be crucial for the ability of flavonoids to regulate (inhibit or activate) the enzyme activity.  相似文献   

15.
It was shown that pentagastrin (0.5 micrograms/100 g of body mass) increases the activity of Ca2+ and phospholipid-dependent protein kinase C in the membrane fraction of rat gastric mucosa cells. This effect of pentagastrin is accompanied by a decrease of the protein kinase C activity in the cytosolic fraction. Chromatography of the membrane fraction revealed an additional peak of the enzyme activity. Analysis of isolated gastric mucosa cells demonstrated that pentagastrin (10(-8)-10(-6) M) (but not 10(-4) M histamine) added to the incubation mixture increased the protein kinase C concentration in the membranes. The pentagastrin effect was directly correlated with the amount of pepsin-producing chief cells in the cellular pools. Carbacholine, another well-known pepsin secretion stimulator, was able to activate, similar to pentagastrin, the protein kinase C activity. It is concluded that protein kinase C plays a prominent role in hormonal regulation of the chief gastric cell function.  相似文献   

16.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was analyzed in cultured pituitary gonadotrophs during treatment with gonadotropin-releasing hormone (GnRH). In pituitary cells purified by centrifugal elutriation, the extent of protein kinase C redistribution during GnRH stimulation was correlated with the enrichment of gonadotrophs. GnRH-stimulated release of luteinizing hormone (LH) from gonadotroph-enriched cells was accompanied by a rapid and dose-dependent decrease in cytosolic protein kinase C and by a corresponding increase in protein kinase C activity in the particulate fraction. Retinal directly inhibited the activity of cytosolic protein kinase C and also attenuated the release of LH from GnRH-stimulated gonadotrophs. These findings, and the ability of GnRH to cause rapid translocation of cytosolic protein kinase C to a membrane-associated form, suggest that hormonal activation of protein kinase C is an intermediate step in the stimulation of pituitary LH secretion by GnRH.  相似文献   

17.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was examined in bovine adrenal glomerulosa cells treated with angiotensin II or potassium. Protein kinase C was isolated from cytosol and from detergent-solubilized particulate fractions by DEAE-cellulose chromatography. A major peak of activity for both the soluble and particulate forms of adrenal glomerulosa protein kinase C was eluted at 0.05-0.09 M NaCl. The soluble and particulate forms were found to constitute about 95 and 5%, respectively, of the total enzyme activity in unstimulated cells. A second peak of kinase activity was eluted with 0.15-0.19 M NaCl, which was not dependent on the presence of phospholipids. Exposure of isolated cells for 20 min to 10(-8) M angiotensin II resulted in a decrease in cytosolic activity to 30-40% of control values, and in a corresponding increase in protein kinase C activity associated with the particulate fraction. This hormone-induced redistribution was found to be dose-dependent with an ED50 of 2 nM for angiotensin II, and it occurred rapidly, reaching a plateau within 5-10 min. It was prevented by the specific antagonist [Sar1,Ala8]angiotensin II. By contrast, stimulation with 12 mM KCl did not change the subcellular distribution of protein kinase C activity. These results suggest that redistribution of protein kinase C represents an early step in the post-receptor activation cascade following angiotensin II, but not potassium stimulation of adrenal glomerulosa cells.  相似文献   

18.
Arginine vasopressin (AVP)-induced formation of inositol phosphates and increased calcium efflux in smooth muscle cells (A-10) were inhibited by short term treatment with phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (Ca2+/phospholipid-dependent protein kinase) (Aiyar, N., Nambi, P., Whitman, M., Stassen, F. L., and Crooke, S. T. (1987) Mol. Pharmacol. 31, 180-184). Here we report that prolonged treatment of A-10 cells (48 h) with PDBu markedly enhanced AVP-induced calcium mobilization but inhibited ATP- and thrombin-induced calcium mobilization. PDBu (400 nM) doubled [Ca2+]i induced with 3 nM AVP, while the basal calcium concentrations before and after AVP were not different from those of untreated cells. The EC50 for a 24-h exposure was 2.3 nM PDBu. Phorbol 12-myristate 13-acetate was also effective, while 4-alpha-phorbol 12,13-didecanoate (48 h at 400 nM) was without effect. 4-alpha-phorbol 12,13-didecanoate also did not affect inositol phosphate formation. PDBu markedly enhanced inositol phosphate formation induced by AVP but not by NaF. PDBu did not affect basal inositol phosphate and polyphosphoinositide levels, and cytosolic and membrane-associated phospholipase C activity. PDBu treatment (48 h, 400 nM) decreased membrane-associated and cytosolic protein kinase C activity by 80 and 90%, respectively. However, the dose response and time course of changes in protein kinase C activity did not correlate with the same curves for PDBu enhancement of AVP-induced calcium mobilization. We conclude that prolonged PDBu treatment selectively enhanced AVP-induced calcium mobilization and polyphosphoinositide hydrolysis. These effects were not caused by an increase in vasopressin receptor number and apparent affinity, an increase in phospholipase C activity, G-protein-phospholipase C coupling, formation of polyphosphoinositide, or inhibition of inositol phosphate metabolizing enzymes. Enhancement of the AVP responses did not correlate with desensitization or activation of protein kinase C. We suggest that prolonged PDBu treatment might sensitize a putative V1 receptor-G-protein-phospholipase C complex.  相似文献   

19.
A mutant cell line (designated Kin-8), isolated from the Y1 mouse adrenocortical tumor cell line on the basis of its resistance to growth-inhibition by 8-bromoadenosine 3', 5'-monophosphate (8BrcAMP), was resistant to the steroidogenic effects of the cyclic nucleotide analog and did not round up in the presence of 8BrcAMP as did responsive Y1 adrenal cells. In Kin-8 cells, the mutation to cyclic nucleotide resistance was associated with a defective type 1 cAMP-dependent protein kinase activity, suggesting an obligatory role for the enzyme in the regulation of these adrenal functions. In this study, the Kin-8 mutant was fused with a rat glioma cell line (C6) in order to analyze the genetic behavior of the protein kinase mutation in somatic cell hybrids. The growth of C6 glial cells was inhibited by 8BrcAMP and its cAMP-dependent protein kinase responded normally to cAMP. In addition, C6 cells had no capacity for steroidogenesis nor did they round up when treated with 8BrcAMP. In Kin-8 X C6 hybrids, the protein kinase mutation seemed to behave recessively. The growth of hybrid cells was inhibited by 8BrcAMP and the protein kinase responded to cAMP over a normal range. Kin-8 X C6 hybrids, when treated with 8BrcAMP, exhibited steroidogenic activities which were greater than the activity measured in either fusion partner and which had lower ED50 values for 8BrcAMP. In addition, Kin-8 X C6 hybrids rounded up in the presence of 8BrcAMP, a morphologic change unlike that seen with either fusion partner. The effects of 8BrcAMP on the steroidogenic activity and morphology of Kin-8 X C6 hybrids was reminiscent of the effects of the cyclic nucleotide on cAMP-responsive, parental Y1 adrenal cells. These results suggest that cell fusion provided a normal cAMP-dependent protein kinase for Kin-8 cells and led to the recovery of a cAMP-responsive adrenal phenotype. type. These results provide additional evidence in support of an obligatory role for cAMP-dependent protein kinase in the regulation of adrenal steroidogenesis, cell division, and cell shape.  相似文献   

20.
Insulin treatment stimulated the activity of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) in both cytosolic and membrane fractions of BC3H-1 myocytes. Within 60 s of insulin treatment, membrane protein kinase C activity increased 2-fold, diminished toward control levels transiently, and then increased 2-fold again after 15 min. Cytosolic protein kinase C activity increased more gradually and steadily up to 80% over a 20-min period. Increases in protein kinase C activity were dose-dependent and were not simply a result of translocation of cytosolic enzyme (although this may have occurred), as total activity was also increased. The increase in protein kinase C activity was not inhibited by cycloheximide (which also increased protein kinase C activity and 2-deoxyglucose transport) and was still evident following anion exchange chromatography. The insulin effect was decidedly different from those of 12-O-tetradecanoylphorbol-13-acetate and phenylephrine using histone III-S as substrate. Phenylephrine decreased cytosolic protein kinase C activity while increasing membrane activity; 12-O-tetradecanoylphorbol-13-acetate only decreased cytosolic protein kinase C activity. The early insulin-induced increases in membrane protein kinase C activity may be related to increased diacylglycerol generation from de novo phosphatidic acid synthesis, as there were rapid increases in [3H]glycerol incorporation into diacylglycerol, and transient increases in phospholipid hydrolysis, as there were transient rapid increases in [3H]diacylglycerol in cells prelabeled with [3H]arachidonate. Later, sustained increases in membrane and cytosolic protein kinase C activity may reflect the continuous activation of de novo phospholipid synthesis, as there were associated increases in [3H]glycerol incorporation into diacylglycerol at later, as well as very early time points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号