首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Conversion of pentoses by yeasts   总被引:2,自引:0,他引:2  
The utilization and conversion of D-xylose, D-xylulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: (1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. (2)The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol, D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. (3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. (4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. (5) Of the four substrates examined, D-xylulose was the perferred substrate, followed by D-xylose, L-arabinose, and xylitol. (6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.  相似文献   

2.
Summary The production of extracellular xylitol from D-xylose by an efficient xylitol-producing yeast, Candida sp. L-102, was studied in shake flask cultures with different nitrogen sources in the basic salt medium. Maximum xylitol production was obtained with urea as the nitrogen source. A final concentration of 100 g/L of xylitol from 114 g/L D-xylose was obtained from the yeast with an indicated yield of 87.7% (based on D-xylose consumed). The average specific xylitol production rate of 0.46 g/g.h was achieved within 65 hours of incubation using 0.3% urea.  相似文献   

3.
The effect of culture conditions on xylitol production rate was investigated using Candida tropicalis IFO 0618. From the variance analysis of xylitol production rate, it was found that initial yeast extract concentration was highly significant (99%), while the interaction between D-xylose concentration and aeration rate was significant (95%). These results show the importance of initial yeast extract concentration and of the balance between D-xylose concentration and aeration in the production of xylitol. It was also clearly shown that C. tropicalis needed more yeast extract concentration for efficient xylitol production than for its growth. In order to enhance xylitol production rate, culture conditions were optimized by the Box-Wilson method. In this respect, initial D-xylose concentration, yeast extract concentration, and K(L)a were chosen as the independent factors in 2(3)-factorial experimental design. As the result of experiments, a maximum xylitol production rate of 2.67 g/L . h was obtained when initial D-xylose concentration and yeast extract concentration were 172.0 and 21.0 g/L, respectively, and K(L)a was 451.50 h(-1) by 90% oxygen gas. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
Summary A mutant strain of Candida sp. XF 217, was found to produce ethanol from D-xylose aerobically as well as anaerobically. The rate of ethanol production under aerobic conditions was greater, indicating an oxygen requirement for the uptake of D-xylose in XF 217. Ethanol was also produced by XF 217 when D-glucose, D-fructose, sucrose or maltose were used as substrates. The D-xylose fermenting yeast strain is a potential organism to use for ethanol production from renewable biomass-derived hexoses and pentoses.  相似文献   

5.
Mycobacterium smegmatis transformed D-xylulose to xylitol in washed cell reactions under aerobic and anaerobic conditions. The yield of xylitol reached about 70% in anaerobic conditions (in N2) by cells grown on media containing xylitol or D-mannitol. Cells immobilized with Ca-alginate had almost the same activity of xylitol production as washed cells.Xylitol was produced from D-xylose using commercial immobilized D-xylose isomerase from Bacillus coagulans and immobilized cells of M. smegmatis. From 10 g of D-xylose, 4 g of xylitol was produced and 5 g of D-xylose remained in the reaction mixture; no D-xylulose was detected.  相似文献   

6.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

7.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for the enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

8.
Summary Ethanol was produced from wood chip hemicellulose hydrolyzate by a xylose-fermenting yeast mutant, Candida sp. XF 217. The rates of D-xylose consumption and ethanol production were greater under aerobic than fermentative conditions. The slow rate of fermentation under fermentative conditions could be overcome by supplementing the broth with D-xylose isomerase (glucose isomerase). The ethanol yield, as based on the sugar consumed, was approximately 90% of the theoretical value.  相似文献   

9.
A thermotolerant yeast capable of fermenting xylose to xylitol at 40°C was isolated and identified as a strain of Debaryomyces hansenii by ITS sequencing. This paper reports the production of xylitol from D-xylose and sugarcane bagasse hemicellulose by free and Ca-alginate immobilized cells of D. hansenii. The efficiency of free and immobilized cells were compared for xylitol production from D-xylose and hemicellulose in batch culture at 40°C. The maximum xylitol produced by free cells was 68.6 g/L from 100 g/L of xylose, with a yield of 0.76 g/g and volumetric productivity 0.44 g/L/h. The yield of xylitol and volumetric productivity were 0.69 g/g and 0.28 g/L/h respectively from hemicellulosic hydrolysate of sugarcane bagasse after detoxification with activated charcoal and ion exchange resins. The Ca-alginate immobilized D. hansenii cells produced 73.8 g of xylitol from 100 g/L of xylose with a yield of 0.82 g/g and volumetric productivity of 0.46 g/L/h and were reused for five batches with steady bioconversion rates and yields.  相似文献   

10.
The ability to assimilate D-glucose and D-xylose was studied in 21 yeast species of the following genera: Candida, Kluyveromyces, Pachysolen, Pichia, and Torulopsis. All the cultures fermented D-glucose with the formation of ethanol. During the assimilation of D-xylose, ethanol was produced by P. stipitis and C. shehatae, whereas xylitol was produced by C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, K. fragilis, K. marxianus, P. guillermondii, and T. molishiama. The yeast P. tannophilus produced comparable amounts of both alcohols. The possible use of xylose-assimilating yeasts for the production of xylitol and ethanol is discussed.  相似文献   

11.
The compositions of intracellular pentose phosphate pathway enzymes have been examined in mutants of Pachysolen tannophilus NRRL Y-2460 which possessed enhanced D-xylose fermentation rates. The levels of oxidoreductive enzymes involved in converting D-xylose to D-xylulose via xylitol were 1.5–14.7-fold higher in mutants than in the parent. These enzymes were still under inductive control by D-xylose in the mutants. The D-xylose reductase activity (EC 1.1.1.21) which catalyses the conversion of D-xylose to xylitol was supported with either NADPH or NADH as coenzyme in all the mutant strains. Other enzyme specific activities that generally increased were: xylitol dehydrogenase (EC 1.1.1.9), 1.2–1.6-fold; glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 1.9–2.6-fold; D-xylulose-5-phosphate phosphoketolase (EC 4.1.2.9), 1.2–2.6-fold; and alcohol dehydrogenase (EC 1.1.1.1), 1.5–2.7-fold. The increase of enzymatic activities, 5.3–10.3-fold, occurring in D-xylulokinase (EC 2.7.1.17), suggested a pivotal role for this enzyme in utilization of D-xylose by these mutants. The best ethanol-producing mutant showed the highest ratio of NADH- to NADPH-linked D-xylose reductase activity and high levels of all other pentose phosphate pathway enzymes assayed.  相似文献   

12.
Seventeen cultures belonging to three genera of facultative bacteria ( Serratia, Cellulomonas, and Corynebacterium) were screened for the production of xylitol, a sugar alcohol used as a sweetener in the pharmaceutical and food industries. The bacterial strains that utilized D-xylose for growth were investigated for xylitol production. A chromogenic assay of both solid and liquid cultures showed that ten of the 17 bacteria screened could grow on D-xylose and produce detectable quantities of xylitol during 24-96 h of fermentation. Among the screened cultures, Corynebacterium sp. B-4247 produced the highest amount of xylitol. In addition, the ten bacterial cultures that initially produced xylitol were studied for the effect of the environmental factors, such as temperature, concentration of D-xylose and aeration, on xylitol production.  相似文献   

13.
Summary The induction of xylose reductase (XR) and xylitol dehydrogenase (XD) activities by D-xylose under different fermentation conditions was investigated in Neurospora crassa. The induction of NADPH-linked XR preceded NADH-linked XR and the ratio of NADH to NADPH-linked XR activity displayed variation from 0.02 to 0.2 suggesting the presence of two separate enzymes. Aerobic conditions were required by N. crassa for cell growth but not for ethanol production. Maximum ethanol of 0.3 g/g of D-xylose was produced when shifted to semiaerobic condition, where high NADH-linked XR and NAD-linked XD activities were observed.  相似文献   

14.
15.
Saccharomyces cerevisiae was engineered to produce D-xylonate by introducing the Trichoderma reesei xyd1 gene, encoding a D-xylose dehydrogenase. D-xylonate was not toxic to S. cerevisiae, and the cells were able to export D-xylonate produced in the cytoplasm to the supernatant. Up to 3.8 g of D-xylonate per litre, at rates of 25–36 mg of D-xylonate per litre per hour, was produced. Up to 4.8 g of xylitol per litre was also produced. The yield of D-xylonate from D-xylose was approximately 0.4 g of D-xylonate per gramme of D-xylose consumed. Deletion of the aldose reductase encoding gene GRE3 in S. cerevisiae strains expressing xyd1 reduced xylitol production by 67%, increasing the yield of D-xylonate from D-xylose. However, D-xylose uptake was reduced compared to strains containing GRE3, and the total amount of D-xylonate produced was reduced. To determine whether the co-factor NADP+ was limiting for D-xylonate production the Escherichia coli transhydrogenase encoded by udhA, the Bacillus subtilis glyceraldehyde 3-phosphate dehydrogenase encoded by gapB or the S. cerevisiae glutamate dehydrogenase encoded by GDH2 was co-expressed with xyd1 in the parent and GRE3 deficient strains. Although each of these enzymes enhanced NADPH consumption on D-glucose, they did not enhance D-xylonate production, suggesting that NADP+ was not the main limitation in the current D-xylonate producing strains.  相似文献   

16.
Ko BS  Rhee CH  Kim JH 《Biotechnology letters》2006,28(15):1159-1162
The effects of glycerol and the oxygen transfer rate on the xylitol production rate by a xylitol dehydrogenase gene (XYL2)-disrupted mutant of Candida tropicalis were investigated. The mutant produced xylitol near the almost yield of 100% from d-xylose using glycerol as a co-substrate for cell growth and NADPH regeneration: 50 g d-xylose l−1 was completely converted into xylitol when at least 20 g glycerol l−1 was used as a co-substrate. The xylitol production rate increased with the O2 transfer rate until saturation and it was not necessary to control the dissolved O2 tension precisely. Under the optimum conditions, the volumetric productivity and xylitol yield were 3.2 g l−1 h−1 and 97% (w/w), respectively.  相似文献   

17.
Pentose fermentation to ethanol with recombinant Saccharomyces cerevisiae is slow and has a low yield. A likely reason for this is that the catabolism of the pentoses D-xylose and L-arabinose through the corresponding fungal pathways creates an imbalance of redox cofactors. The process, although redox neutral, requires NADPH and NAD+, which have to be regenerated in separate processes. NADPH is normally generated through the oxidative part of the pentose phosphate pathway by the action of glucose-6-phosphate dehydrogenase (ZWF1). To facilitate NADPH regeneration, we expressed the recently discovered gene GDP1, which codes for a fungal NADP+-dependent D-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) (EC 1.2.1.13), in an S. cerevisiae strain with the D-xylose pathway. NADPH regeneration through an NADP-GAPDH is not linked to CO2 production. The resulting strain fermented D-xylose to ethanol with a higher rate and yield than the corresponding strain without GDP1; i.e., the levels of the unwanted side products xylitol and CO2 were lowered. The oxidative part of the pentose phosphate pathway is the main natural path for NADPH regeneration. However, use of this pathway causes wasteful CO2 production and creates a redox imbalance on the path of anaerobic pentose fermentation to ethanol because it does not regenerate NAD+. The deletion of the gene ZWF1 (which codes for glucose-6-phosphate dehydrogenase), in combination with overexpression of GDP1 further stimulated D-xylose fermentation with respect to rate and yield. Through genetic engineering of the redox reactions, the yeast strain was converted from a strain that produced mainly xylitol and CO2 from D-xylose to a strain that produced mainly ethanol under anaerobic conditions.  相似文献   

18.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

19.
Summary The initial steps of D-xylose catabolism inFusarium oxysporum have been studied. The presence of the oxidoreductase pathway for D-xylose catabolism was demonstrated. The enzymes involved, D-xylose reductase and xylitol dehydrogenase, were found to be inducible and relatively specific for D-xylose and xylitol. D-xylose isomerase was not detected.  相似文献   

20.
Considerable interest in the D-xylose catabolic pathway of Pachysolen tannophilus has arisen from the discovery that this yeast is capable of fermenting D-xylose to ethanol. In this organism D-xylose appears to be catabolized through xylitol to D-xylulose. NADPH-linked D-xylose reductase is primarily responsible for the conversion of D-xylose to xylitol, while NAD-linked xylitol dehydrogenase is primarily responsible for the subsequent conversion of xylitol to D-xylulose. Both enzyme activities are readily detectable in cell-free extracts of P. tannophilus grown in medium containing D-xylose, L-arabinose, or D-galactose and appear to be inducible since extracts prepared from cells growth in media containing other carbon sources have only negligible activities, if any. Like D-xylose, L-arabinose and D-galactose were found to serve as substrates for NADPH-linked reactions in extracts of cells grown in medium containing D-xylose, L-arabinose, or D-galactose. These L-arabinose and D-galactose NADPH-linked activities also appear to be inducible, since only minor activity with L-arabinose and no activity with D-galactose is detected in extracts of cells grown in D-glucose medium. The NADPH-linked activities obtained with these three sugars may result from the actions of distinctly different enzymes or from a single aldose reductase acting on different substrates. High-performance liquid chromatography and gas-liquid chromatography of in vitro D-xylose, L-arabinose, and D-galactose NADPH-linked reactions confirmed xylitol, L-arabitol, and galactitol as the respective conversion products of these sugars. Unlike xylitol, however, neither L-arabitol nor galactitol would support comparable NAD-linked reaction(s) in cellfree extracts of induced P. tannophilus. Thus, the metabolic pathway of D-xylose diverges from those of L-arabinose or D-galactose following formation of the pentitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号