首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recent review paper considers the potential of algal biomass as a source of liquid and gaseous biofuels, but there are a number of issues concerning the results and conclusions presented. These include the biomass energy values, which in some cases are unusually high; and the apparent production of more energy from processed biomass than is present in the original material. The main causes for these discrepancies include the choice of empirical formula for protein; confusion between values calculated on a total or volatile solids basis; and the lack of a mass balance approach. The choice of protein formula also affects predicted concentrations of ammonia in the digester. These and other minor errors contribute to some potentially misleading conclusions which could affect subsequent interpretations of the overall process feasibility.  相似文献   

2.
The potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well as the economical and energetic balance of such a promising technology. Indeed, the conversion of algal biomass after lipid extraction into methane is a process that can recover more energy than the energy from the cell lipids. Three main bottlenecks are identified to digest microalgae. First, the biodegradability of microalgae can be low depending on both the biochemical composition and the nature of the cell wall. Then, the high cellular protein content results in ammonia release which can lead to potential toxicity. Finally, the presence of sodium for marine species can also affect the digester performance. Physico-chemical pretreatment, co-digestion, or control of gross composition are strategies that can significantly and efficiently increase the conversion yield of the algal organic matter into methane. When the cell lipid content does not exceed 40%, anaerobic digestion of the whole biomass appears to be the optimal strategy on an energy balance basis, for the energetic recovery of cell biomass. Lastly, the ability of these CO2 consuming microalgae to purify biogas and concentrate methane is discussed.  相似文献   

3.
Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters.  相似文献   

4.
Xie S  Frost JP  Lawlor PG  Wu G  Zhan X 《Bioresource technology》2011,102(19):8748-8755
Dried grass silage (GS) was pre-treated at different NaOH loading rates (1%, 2.5%, 5% and 7.5% by volatile solids (VS) mass in grass silage) and temperatures (20 °C, 60 °C, 100 °C and 150 °C) to determine effects on its bio-degradability in terms of the hydrolysis yield and degradation of ligno-cellulosic materials for biogas production. At 100 °C and the four NaOH loadings, up to 45% of the total COD was solubilised and up to 65.6%, 36.1% and 21.2% of lignin, hemicellulose and cellulose were removed, respectively; biological methane production potentials obtained were 359.5, 401.8, 449.5 and 452.5 ml CH?/g VS added, respectively, being improved by 10-38.9% in comparison with untreated GS. VS removals following anaerobic digestion were 67.6%, 76.9%, 85.3%, 95.2% and 96.7% for untreated GS and GS treated at the four NaOH loadings, respectively. 100 °C and the NaOH loading rate of 5% is recommended as a proper GS pre-treatment condition.  相似文献   

5.
The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H3PO4 was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m3 CH4/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21–0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.  相似文献   

6.
7.
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. JIMB-2008: BioEnergy—Special issue.  相似文献   

8.
Microalgae have the ability to grow rapidly, synthesize and accumulate large amounts (approximately 20-50% of dry weight) of lipids. A successful and economically viable algae based oil industry depends on the selection of appropriate algal strains. In this study ten species of microalgae were prospected to determine their suitability for oil production: Chaetoceros gracilis, Chaetoceros mulleri, Chlorella vulgaris, Dunaliella sp., Isochrysis sp., Nannochloropsis oculata, Tetraselmis sp., Tetraselmis chui, Tetraselmis tetrathele and Thalassiosira weissflogii. The study was carried out in 3 L glass flasks subjected to constant aeration and controlled artificial illumination and temperature at two different salinities. After harvesting, the extraction of oil was carried out using the Bligh and Dyer method assisted by ultrasound. Results showed that C. gracilis presented the highest oil content and that C. vulgaris presented the highest oil production.  相似文献   

9.
Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 LCH4 kg−1COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg−1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste.  相似文献   

10.
One of the more promising processes for the energetic transformation of waste is the anaerobic digestion of the Organic Fraction of Municipal Solid Waste (OFMSW). An experimental campaign was carried out on three different samples of OFMSW from Waste Separation (WS), one as received and two obtained after mechanical treatment (squeezing): OFMSW slurry (liquid fraction) and OFMSW Waste (residual solid fraction). Anaerobic Biogasification Potential (ABP) and anaerobic digestion tests (AD) were carried out, investigating the effects of inoculum and pH. The OFMSW Waste was also examined to evaluate the possibility to dispose of it in a landfill. Results showed that OFMSW slurry must be diluted and inoculated and that pH control in the start up phase is essential, in order to have significant biogas productions. OFMSW as received did not show a significant biogas production, while OFMSW Waste showed suitable characteristics for landfill disposal, except for Dissolved Organic Carbon.  相似文献   

11.
Modeling anaerobic digestion of microalgae using ADM1   总被引:1,自引:0,他引:1  
The coupling between a microalgal pond and an anaerobic digester is a promising alternative for sustainable energy production by transforming carbon dioxide into methane using solar energy. In this paper, we demonstrate the ability of the original ADM1 model and a modified version (based on Contois kinetics for the hydrolysis steps) to represent microalgae anaerobic digestion. Simulations were compared to experimental data of an anaerobic digester fed with Chlorella vulgaris. The modified ADM1 fits adequately the data for the considered 140 day experiment encompassing a variety of influent load and flow rates. It turns out to be a reliable predictive tool for optimising the coupling of microalgae with anaerobic digestion processes.  相似文献   

12.
Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88 ± 8 L (49 ± 5 L CH4) and 96 ± 19 L (65 ± 14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD = 254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters.  相似文献   

13.
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne−1 VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne−1. This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed.  相似文献   

14.
Production of valuable compounds including biofuels and pharmaceutical precursors derived from microalgae has garnered significant interest. Stable production of algal biomass is essential to make the microalgal industry commercially feasible. However, one of the largest issues is severe biological contamination by predators grazing the algal biomass, resulting in the crash of outdoor cultures. In the present study, we propose a novel engineering strategy for microalgae to cope with predators. The overexpression of plant chlorophyllase (CLH) in a microalga resulted in the enhancement of resistance to the predator. This result supported our hypothesis that CLH promotes chlorophyll breakdown in the chloroplasts of the microalgae when they are digested by the predator, generating the phototoxic catabolite chlorophyllide that damages the predator. To the best of our knowledge, this is the first study to establish predator-resistant microalgae by enhancing the CLH activity.  相似文献   

15.
Using renewable microalgal biomass as active feedstocks for biofuels and bioproducts is explored to substitute petroleum-based fuels and chemicals. In the last few years, the importance of microalgae biomass has been realized as a renewable feedstock due to several positive attributes associated with it. Biorefinery via anaerobic digestion (AD) of microalgal biomass is a promising and sustainable method to produce value-added chemicals, edible products and biofuels. Microalgal biomass pretreatment is a significant process to enhance methane production by AD. Findings on the AD microbial community’s variety and organization can give novel in turn on digester steadiness and presentation. This review presents a vital study of the existing facts on the AD microbial community and AD production. Co-digestion of microalgal biomass with different co-substrates was used in AD to enhance biogas production, and the process was economically viable with improved biodegradability. Microcystins, which are produced by toxic cyanobacterial blooms, create a severe hazard to environmental health. Anaerobic biodegradation is an effective method to degrade the microcystins and convert into nontoxic products. However, for the cost-effective conversion of biomass to energy and other beneficial byproducts, additional highly developed research is still required for large-scale AD of microalgal biomass.  相似文献   

16.
Anaerobic digestion of wastewater from a dimethyl terephthalate plant was studied in continuously stirred tank reactors with plastic net biomass support particles (BSP) at a level of 20% (v/v). The experimental results showed that the BSP system could treat the wastewater at a hydraulic retention time as low as 1.5 d, organic loading as high as 20 kg COD/m3/d and at acidic feed pH as low as 4.5 with 95% COD reduction and biogas production of about 8l/l/d, while the control system without support particles could not treat the wastewater above a 5-d hydraulic retention time, 5 kg COD/m3/d organic loading and a feed pH of 6.0. Thus, augmentation of BSP upgraded the performance of the conventional suspended growth system to an equivalent level to advanced reactors.  相似文献   

17.
生物强化技术通过为特定的生物过程"设计"微生物,进而作为一种提升反应系统活力和性能的手段被应用于生物质沼气制备过程,以便加快发酵系统启动时间、增加原料利用率、缩短酸败系统的恢复时间、降低高有机负荷的抑制作用等。本文针对以木质纤维素为原料的沼气制备中的生物强化技术,从生物强化菌剂的构建及标准、生物强化作用的影响因素、生物强化作用机制的探究等几个方面来阐述目前国内外生物强化技术在生物质沼气制备过程中的应用与研究进展,以及存在的问题和解决方案。  相似文献   

18.
In the present work, we report a novel on‐target protein cleavage method. The method utilizes ultrasonic energy and allows up to 20 samples to be cleaved in 5 min for protein identification and one sample in 30 s for on‐tissue digestion. The standard proteins were spotted on a conductive glass slide in a volume of 0.5 μL followed by 5 min of ultrasonication after trypsin addition. Controls (5 min, 37°C no ultrasonication) were also assayed. After trypsin addition, digestion of the tissues was enhanced by 30 s of ultrasonication. The samples were analyzed and compared to those obtained by using conventional 3 h heating proteolysis. The low sample volume needed for the digestion and reduction in sample‐handling steps and time are the features that make this method appealing to the many laboratories working with high‐throughput sample treatment.  相似文献   

19.
Expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors were operated at 15 degrees C for the treatment of 2,4,6-trichlorophenol (TCP)-containing volatile fatty acid (VFA)-based wastewaters. The seed sludge used as inoculum for the control (no TCP) and test reactor was unexposed to chlorophenols (CPs) prior to the 425-day trial. TCP supplementation to the feed at 50 mg TCPl(-1) partially inhibited the anaerobic degradation of the VFA feed measured as COD removal efficiency. However, the withdrawal and subsequent application of stepwise increments to the TCP loading resulted in steady COD removal. Terminal restriction fragment length polymorphism analysis showed Methanosaeta-like Archaea in the control reactor over the experimental period. Different methanogenic populations were detected in the test reactor and responded to the changes in feed composition. Bacterial community analyses indicated changes in the community structure over time and suggested the presence of Campylobacter-like, Acidimicrobium-like and Heliophilum-like organisms in the samples. TCP mineralisation was by a reductive dechlorination pathway through 2,4-dichlorophenol (DCP) and 4-chlorophenol (4-CP) or 2-chlorophenol (2-CP). CP degradation rates in sludge granules from the lower chamber of the hybrid EGSB-AF reactor was in the order TCP > DCP > 4-CP > 2-CP. However, a biodegradability order of lower CPs > TCP was observed in fixed-film biomass taken from the upper reactor chamber, thus reflecting the role of this reactor section in the metabolism of residual lower CPs from the lower sludge-bed stage of operation.  相似文献   

20.
Anaerobic co-digestion of residues from the cold pressing and trans-esterification of oilseed rape (OSR) with other farm wastes was considered as a means of enhancing the sustainability of on-farm biodiesel production. The study verified the process energy yields using biochemical methane potential (BMP) tests and semi-continuous digestion trials. The results indicated that high proportions of OSR cake in the feedstock led to a decrease in volatile solids destruction and instability of the digestion process. Co-digestion with cattle slurry or with vegetable waste led to acceptable specific and volumetric methane productions, and a digestate low in potentially toxic elements (PTE). The results were used to evaluate energy balances and greenhouse gas emissions of the integrated process compared with biodiesel production alone. Co-digestion was shown to provide energy self-sufficiency and security of supply to farms, with sufficient surplus for export as fuel and electricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号