首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.  相似文献   

2.
Endothelial dysfunction causes an imbalance in endothelial NO and O2 production rates and increased peroxynitrite formation. Peroxynitrite and its decomposition products cause multiple deleterious effects including tyrosine nitration of proteins, superoxide dismutase (SOD) inactivation, and tissue damage. Studies have shown that peroxynitrite formation during endothelial dysfunction is strongly dependent on the NO and O2 production rates. Previous experimental and modeling studies examining the role of NO and O2 production imbalance on peroxynitrite formation showed different results in biological and synthetic systems. However, there is a lack of quantitative information about the formation and biological relevance of peroxynitrite under oxidative, nitroxidative, and nitrosative stress conditions in the microcirculation. We developed a computational biotransport model to examine the role of endothelial NO and O2 production on the complex biochemical NO and O2 interactions in the microcirculation. We also modeled the effect of variability in SOD expression and activity during oxidative stress. The results showed that peroxynitrite concentration increased with increase in either O2 to NO or NO to O2 production rate ratio (QO2/QNO or QNO/QO2, respectively). The peroxynitrite concentrations were similar for both production rate ratios, indicating that peroxynitrite-related nitroxidative and nitrosative stresses may be similar in endothelial dysfunction or inducible NO synthase (iNOS)-induced NO production. The endothelial peroxynitrite concentration increased with increase in both QO2/QNO and QNO/QO2 ratios at SOD concentrations of 0.1–100 μM. The absence of SOD may not mitigate the extent of peroxynitrite-mediated toxicity, as we predicted an insignificant increase in peroxynitrite levels beyond QO2/QNO and QNO/QO2 ratios of 1. The results support the experimental observations of biological systems and show that peroxynitrite formation increases with increase in either NO or O2 production, and excess NO production from iNOS or from NO donors during oxidative stress conditions does not reduce the extent of peroxynitrite mediated toxicity.  相似文献   

3.
Alachlor is a widely used pre-emergent chloroacetanilide herbicide which has been shown to have many harmful ecological and environmental effects. However, the mechanism of alachlor-induced oxidative stress is poorly understood. We found that, in Saccharomyces cerevisiae, the intracellular levels of reactive oxygen species (ROS) including superoxide anions were increased only after long-term exposure to alachlor, suggesting that alachlor is not a pro-oxidant. It is likely that alachlor-induced oxidative stress may result from protein denaturation because alachlor rapidly induced an increased protein aggregation, leading to upregulation of SSA4 and HSP82 genes encoding heat shock proteins (Hsp) of Hsp70 and Hsp90 family, respectively. Although only SOD1 encoding Cu/Zn-superoxide dismutase (SOD), but not SOD2 encoding Mn-SOD, is essential for alachlor tolerance, both SODs play a crucial role in reducing alachlor-induced ROS. We found that, after alachlor exposure, glutathione production was inhibited while its utilization was increased, suggesting the role of glutathione in protecting cells against alachlor, which becomes more important when lacking Cu/Zn-SOD. Based on our results, it seems that alachlor primarily causes damages to cellular macromolecules such as proteins, leading to an induction of endogenous oxidative stress, of which intracellular antioxidant defense systems are required for elimination.  相似文献   

4.
Cadmium (Cd) is a potential environmental phytotoxicant. The generation of reactive oxygen species (ROS) due to Cd stress is responsible for the induction of oxidative stress in plants. On the other hand, SNP, a NO donor is known to have effect on Cd-induced oxidative stress in plants. We evaluated the effect of NO on the regulation of Cd stress in the rice (Oryza sativa L.) variety MSE-9. Cd treatment was given in the form of 50, 100 and 200 ??M, whereas for interaction study, 100 ??M of Cd and 100 ??M of SNP were used. The result showed that Cd-induced oxidative stress in MSE-9 by generating ROS. However, when SNP was given with Cd stress, it was seen that SNP treatment regulated the stress metabolism in rice seedlings under Cd toxicity by generating NO. It can be said that the SNP in combination with Cd treatment might possess the way to protect rice seedlings under Cd stress.  相似文献   

5.
6.
Oxidative stress, which is the result of an imbalance between production and detoxification of reactive oxygen species, is a major contributor to chronic human disorders, including cardiovascular and neurodegenerative diseases, diabetes, aging, and cancer. Therefore, it is important to study oxidative stress not only in cell systems but also using whole organisms. C. elegans is an attractive model organism to study the genetics of oxidative stress signal transduction pathways, which are highly evolutionarily conserved.Here, we provide a protocol to measure oxidative stress resistance in C. elegans in liquid. Briefly, ROS-inducing reagents such as paraquat (PQ) and H2O2 are dissolved in M9 buffer, and solutions are aliquoted in the wells of a 96 well microtiter plate. Synchronized L4/young adult C. elegans animals are transferred to the wells (5-8 animals/well) and survival is measured every hour until most worms are dead. When performing an oxidative stress resistance assay using a low concentration of stressors in plates, aging might influence the behavior of animals upon oxidative stress, which could lead to an incorrect interpretation of the data. However, in the assay described herein, this problem is unlikely to occur since only L4/young adult animals are being used. Moreover, this protocol is inexpensive and results are obtained in one day, which renders this technique attractive for genetic screens. Overall, this will help to understand oxidative stress signal transduction pathways, which could be translated into better characterization of oxidative stress-associated human disorders.  相似文献   

7.
8.
9.
Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and catalase as well as neuronal and inducible nitric oxide synthase isoforms (nNOS and iNOS) responsible for production of nitric oxide (NO) were carried out during different stages of metamorphosis in tail of tadpole Xenopus laevis. NO also has profound effect on the mitochondrial function having its own nitric oxide NOS enzyme. Hence, in situ staining for NO and mitochondria also was investigated. The distribution of nNOS and iNOS was found to be stage specific, and the gene expression of nNOS was up-regulated by thyroxin treatment. In situ staining for NO and mitochondria shows co-localization, suggesting mitochondria being one of the sources of NO. SOD and catalase showed significant co-localization during earlier stages of metamorphosis, but before the tail regression begins, there was a significant decrease in activity as well as co-localization suggesting increased ROS accumulation. These findings are discussed in terms of putative functional importance of ROS and cytoplasmic as well as mitochondrial derived NO in programmed cell death in tail tissue.  相似文献   

10.
11.
BackgroundAntibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed toward the pre-antibiotic era. Antimicrobial peptides (AMPs) are a host defense component against infectious pathogens in response to innate immunity. PMAP-23, an AMP derived from porcine myeloid, possesses antibacterial activity. It is currently not clear how the antibacterial activity of PMAP-23 is manifested.MethodsThe disruptive effect of nitric oxide (NO) on the catalase activity, reactive oxygen species (ROS) production, DNA oxidation and apoptosis-like death were evaluated using the NO generation inhibitor.ResultsIn this investigation, PMAP-23 generates NO in a dose dependent manner. NO deactivated catalase and this antioxidant could not protect Escherichia coli against ROS, especially hydroxyl radical. This redox imbalance was shown to induce oxidative stress, thus leading to DNA strand break. Consequently, PMAP-23 treated E. coli cells resulted in apoptosis-like death. These physiological changes were inhibited when NO generation was inhibited. In the ΔdinF mutant, the levels of DNA strand break sharply increased and the cells were more sensitive to PMAP-23 than wild type.ConclusionOur data strongly indicates that PMAP-23 mediates apoptosis-like cell death through affecting intracellular NO homeostasis. Furthermore, our results demonstrate that DinF functioned in protection from oxidative DNA damage.General significanceThe identification of PMAP-23 antibacterial activity and mechanism provides a promising antibacterial agent, supporting the role of NO in cell death regulation.  相似文献   

12.
In the present study, we used suspension cultured cells from Chorispora bungeana Fisch. and C.A. Mey to investigate whether nitric oxide (NO) is involved in the signaling pathway of chilling adaptive responses. Low temperatures at 4 °C or 0 °C induced ion leakage, lipid peroxidation and cell viability suppression, which were dramatically alleviated by exogenous application of NO donor sodium nitroprusside (SNP). The levels of reactive oxygen species (ROS) were obviously reduced, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) and the contents of ascorbic acid (AsA) and reduced glutathione (GSH) increased evidently in the presence of SNP under chilling stress. In addition, under low temperature conditions, treatment with NO scavenger PTIO or mammalian NO synthase (NOS) inhibitor l-NAME remarkably aggravated oxidative damage in the suspension cultures compared with that of chilling treatment alone. Moreover, measurements of NOS activity and NO production showed that both NOS activity and endogenous NO content increased markedly under chilling stress. The accumulation of NO was inhibited by l-NAME in chilling-treated cultures, indicating that most NO production under chilling may be generated from NOS-like activity. Collectively, these results suggest that chilling-induced NO accumulation can effectively protect against oxidative injury and that NOS like activity-dependent NO production might act as an antioxidant directly scavengering ROS or operate as a signal activating antioxidant defense under chilling stress, thus conferring an increased tolerance to chilling in C. bungeana suspension cultures.  相似文献   

13.
Cladophora glomerata (L.) Kütz. and Enteromorpha ahlneriana Bliding are morphologically similar filamentous green algae that are dominants in the upper littoral zone of the brackish Baltic Sea. As these two species co-exist in a continuously fluctuating environment, we hypothesised that they may have different strategies to cope with oxidative stress. This was tested in laboratory experiments through stressing the algae by high irradiance (600 μmol photons PAR m−2 s−1) at two different temperatures (15 and 26 °C) in a closed system. Thus, oxidative stress was created by high irradiance (photo-oxidative stress) and/or carbon depletion. The extent of lipid oxidative damage, antioxidant enzyme activities and the amount of hydrogen peroxide excreted by the algae to the surrounding seawater medium were measured. The results suggest that the two species have different strategies: the annual C. glomerata could be classified as a more stress-tolerant species and the ephemeral E. ahlneriana as a more stress-susceptible species. Low temperature in combination with high irradiance created less lipid oxidative damage in C. glomerata than in E. ahlneriana, which was probably related to the higher regular activities of the hydrogen peroxide scavenging enzymes catalase and ascorbate peroxidase in C. glomerata, whereas in E. ahlneriana high activities of these enzymes were only obtained after the induction of oxidative stress. Superoxide dismutase activities were similar in both species, but the mechanisms to remove the hydrogen peroxide produced by the action of this enzyme were different: more through scavenging enzymes in C. glomerata and more through excretion to the seawater medium in E. ahlneriana. The high excretion of hydrogen peroxide, possibly in combination with brominated volatile halocarbons, by E. ahlneriana may have a negative effect on epiphytes and may partly explain why this alga is usually remarkably devoid of epiphytes and grazers compared to C. glomerata.  相似文献   

14.
In vitro studies have demonstrated that GM-CSF in combination with other stimulatory factors induces a microbicidal response that control T. gondii infection. We assessed whether GM-CSF alone can control T. gondii replication in murine microglial cultures. Microglia were collected and cultured with or without GM-CSF and the half of each group was infected with T. gondii. We determined the T. gondii infectivity, cytokines levels, NO and superoxide detection. GM-CSF alone primes microglia, which after infection induces the production of TNF-α and IL-6, leading to NO and superoxide production, without any stimulus from IL-12p70 and IFN-γ.  相似文献   

15.
16.
Oxidative stress is probably one of the mechanisms involved in neuronal damage induced by ischemia-reperfusion, and the antioxidant activity of plasma may be an important factor providing protection from neurological damage caused by stroke-associated oxidative stress. The aim of this study was to investigate the status of oxidative stress, NO and ONOO levels in patients with atherothrombotic and lacunar acute ischemic stroke and iNOS, eNOS and nitrotyrosine expression in the same patients. Plasma ONOO levels were significantly higher in patients than in controls while NO decreases in patients in respect to controls. Densitometric analysis of bands indicated that iNOS and N-Tyr protein levels were significantly higher in patients in respect to controls. This study has highlighted a significant NO decrease in our patients compared with controls and this is most probably due to the increased expression of inducible NO synthase by the effect of thrombotic attack. In fact, the constitutive NO isoforms, which produce small amounts of NO, are beneficial, while activation of the inducible isoform of NO, which produces much more NO, causes injury, being its toxicity greatly enhanced by generation of peroxynitrite. The significant ONOO increase observed in our patients, compared to controls, is most probably due to reaction of NO with O2·−. These findings suggest that free radical production and oxidative stress in ischemic stroke might have a major role in the pathogenesis of ischemic brain injury. Peroxynitrite might be the main marker of brain damage and neurological impairment in acute ischemic stroke.  相似文献   

17.
This study evaluated the effect of Flacourtia indica fruit extract against isoprenaline (ISO) induced renal damage in rats. This investigation showed that ISO administration in rats increased the level oxidative stress biomarkers such as malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP) in kidneys followed by a decrease in antioxidant enzymes functions. Flacourtia indica fruit extract, which is rich in strong antioxidants, also reduced the MDA, NO and APOP level in kidney of ISO administered rats. Inflammation and necrosis was also visible in kidney section of ISO administered rats which was significantly prevented by atenolol and Flacourtia indica fruit extract. Moreover, atenolol and Flacourtia indica fruit extract also modulated the genes expressions related to inflammation and oxidative stress in kidneys. The beneficial effects could be attributed to the presence of a number of phenolic antioxidants. This study suggests that Flacourtia indica fruit extract may prevent kidney dysfunction in ISO administered rats, probably by preventing oxidative stress and inflammation.  相似文献   

18.
Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22 °C and 26 °C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves.  相似文献   

19.
20.
Kassab A  Piwowar A 《Biochimie》2012,94(9):1837-1848
Most known pathways of diabetic complications involve oxidative stress. The mitochondria electron transport chain is a significant source of reactive oxygen species (ROS) in insulin secretory cells, insulin peripheral sensitive cells and endothelial cells. Elevated intracellular glucose level induces tricarboxylic acid cycle electron donor overproduction and mitochondrial proton gradient increase leading to an increase in electron transporter lifetime. Subsequently, the electrons leaked combine with respiratory oxygen (O2) resulting in superoxide anion (O2) production. Advanced glycation end products derive ROS via interaction with their receptors. Elevated diacylglycerol and ROS activate the protein kinase C pathway which, in turn, activates NADPH oxidases. A vicious circle of pathway derived ROS installs. Pathologic pathways induced ROS are activated and persistent though glycemia returns to normal due to hyperglycemia memory. Endothelial nitric oxide synthase may produce both superoxide anion (O2) and nitric oxide (NO) leading to peroxynitrite (ONOO) generation. Homocysteine is also implicated in oxidative stress pathogenesis. In this paper we have highlighted the pathologic mechanisms of ROS on atherosclerosis, renal dysfunction, retina dysfunction and nerve dysfunction in type 2 diabetes. Cell oxidant stress delivery have pivotal role in cell dysfunction onset and progression of angiopathies but an early introduction of good glycemic control may protect cells more efficiently than antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号