首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of two different doses (50 and 100 mg/kg body wt/day for 14 days) of 80% ethanolic extract of the leaves of Adhatoda vesica were examined on drug metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 8 weeks old Swiss albino mice. The modulatory effect of the extract was also examined on extra-hepatic organs viz. lung, kidney and forestomach for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Significant increase in the activities of acid soluble sulfhydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the liver at both dose levels of treatments. Adhatoda vesica acted as bifunctional inducer since it induced both phase I and phase II enzyme systems. Both the treated groups showed significant decrease in malondialdehyde (MDA) formation in liver, suggesting its role in protection against prooxidant induced membrane damage. The cytosolic protein was significantly inhibited at both the dose levels of treatment indicating the possibility of its involvement in the inhibition of protein synthesis. BHA has significantly induced the activities of GR and GSH in the present study. The extract was effective in inducing GST and DTD in lung and forestomach, and SOD and CAT in kidney. Thus, besides liver, other organs viz., lung, kidney and forestomach were also stimulated by Adhatoda, to increase the potential of the machinery associated with the detoxification of xenobiotic compounds. But, liver and lung showed a more consistent induction. Since the study of induction of the phase I and phase II enzymes is considered to be a reliable marker for evaluating the chemopreventive efficacy of a particular compound, these findings are suggestive of the possible chemopreventive role played by Adhatoda leaf extract.  相似文献   

2.
Status of oxidative/antioxidative profile was the mechanistic approach to inumerate the nature of protection by N-acetylcysteine (NAC) in isoniazid (INH) exposed experimental animals. Analysis of lipid peroxidation, thiol levels, cytochrome P450, superoxide dismutase (SOD), catalase, glutathione peroxidase, reductase and transferase were estimated in liver along with the body and liver weight of animals and histological observations. Isoniazid exposure to animals resulted in no change in body and liver weights. Thiols, lipid peroxidation, catalase, SOD glutathione peroxidase, reductase, transferase and cytochrome P450 levels were altered with INH exposure. Supplementation of NAC with INH protected the animals against hepatotoxic reactions by minimizing the free radical induced tissue injury and overall maintenance of the endogenous scavengers of free radicals.  相似文献   

3.
T Ozen  H Korkmaz 《Phytomedicine》2003,10(5):405-415
The effects of two doses (50 and 100 mg/kg body wt given orally for 14 days) of an ethanol-water (80%-20%) extract of Urtica dioica L. and butylated hydroxyanisole (BHA) were investigated, for phase I and phase II enzymes, antioxidant enzymes, lactate dehydrogenase, lipid peroxidation and sulfhydryl groups in the liver of Swiss albino mice (8-9 weeks old). A modulatory effect of two doses and BHA was also observed for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in the kidney, lung and forestomach, as compared with the control group. The activities of cytochrome b5 (cyt b5), NADH-cytochrome b5 reductase (cyt b5 R), glutathione S-transferase (GST), DT-diaphorase (DTD), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) showed a significant increase in the liver at both dose levels of extract. Both extract-treated showed significantly lower activity of cytochrome P450 (cyt P450), lactate dehydrogenase (LDH), NADPH-cytochrome P450 reductase (cyt P450 R), total sulfhydryl groups (T-SH), nonprotein sulfhydryl groups (NP-SH) and protein-bound sulfhydryl groups (PB-SH). BHA-treated Swiss albino mice showed a notable increase in levels of cyt b5, DTD, T-SH, PB-SH, GPx, GR, and SOD in the liver while, LDH, cyt P450, cyt P450 R, Cyt b5 R, GST, NP-SH, and CAT levels were reduced significantly as compared to control values. The extract was effective in inducing GST, DTD, SOD and CAT activity in the forestomach and SOD and CAT activity in the lung at both dose levels. BHA-treated Swiss albino mice induced DTD, GST and all antioxidative parameters in the kidney, lung and forestomach.  相似文献   

4.
The present study is an effort to identify a potent chemopreventive agent against various diseases (including cancer) in which oxidative stress plays an important causative role. Here, we investigated the effect of a hydroalcoholic (80% ethanol: 20% distilled water) extract of aerial roots of Tinospora cordifolia (50 and 100mg/kg body wt./day for 2 weeks) on carcinogen/drug metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione (GSH) content, lactate dehydrogenase and lipid peroxidation in liver of 8-week-old Swiss albino mice. The modulatory effect of the extract was also examined on extrahepatic organs, i.e., lung, kidney and forestomach, for the activities of GSH S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD) and catalase. Significant increases in the levels of acid-soluble sulfhydryl (-SH) and cytochrome P(450) contents, and enzyme activities of cytochrome P(450) reductase, cytochrome b(5) reductase, GST, DTD, SOD, catalase, GSH peroxidase (GPX) and GSH reductase (GR) were observed in the liver. Both treated groups showed decreased malondialdehyde (MDA) formation. In lung SOD, catalase and GST; in kidney SOD and catalase; and in forestomach SOD, DTD and GST showed significant increase at both dose levels of treatment. BHA (0.75%, w/w in diet), a pure antioxidant compound, was used as a positive control. This group showed increase in hepatic levels of GSH content, cytochrome b(5), DTD, GST, GR and catalase, whereas MDA formation was inhibited significantly. In the BHA-treated group, the lung and kidney showed increased levels of catalase, DTD and GST, whereas SOD was significantly increased in the kidney and forestomach; the latter also showed an increase in the activities of DTD and GST. The enhanced GSH level and enzyme activities involved in xenobiotic metabolism and maintaining antioxidant status of cells are suggestive of a chemopreventive efficacy of T. cordifolia against chemotoxicity, including carcinogenicity, which warrants further investigation of active principle (s) present in the extract responsible for the observed effects employing various carcinogenesis models.  相似文献   

5.
Role of lipid peroxidation and antioxidative enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase) in water stress-promoted senescence of detached rice leaves was investigated. The senescence was followed by measuring the decrease in protein content. Increased lipid peroxidation was closely correlated with senescence in water stressed leaves. Decrease in superoxide dismutase activity was evident 8 h after beginning of water stress. However, decreased catalase, peroxidase, and ascorbate peroxidase activity was observed only when senescence was observed. Glutathione reductase was not affected by water stress. Free radical scavengers retarded water stress-enhanced senescence.  相似文献   

6.
The effect of exogenously applied H2O2 on salt stress acclimation was studied with regard to plant growth, lipid peroxidation, and activity of antioxidative enzymes in leaves and roots of a salt-sensitive maize genotype. Pre-treatment by addition of 1 microM H2O2 to the hydroponic solution for 2 days induced an increase in salt tolerance during subsequent exposure to salt stress. This was evidenced by plant growth, lipid peroxidation and antioxidative enzymes measurements. In both leaves and roots the variations in lipid peroxidation and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, and catalase) activities of both acclimated and unacclimated plants, suggest that differences in the antioxidative enzyme activities may, at least in part, explain the increased tolerance of acclimated plants to salt stress, and that H2O2 metabolism is involved as signal in the processes of maize salt acclimation.  相似文献   

7.
This study was undertaken to investigate the effects of zinc on lipid peroxidation and various antioxidative enzymes in the intestines of male Wistar rats fed on ethanol. It was observed that NADPH-dependent lipid peroxidation (LP) was significantly increased upon ethanol treatment for 4 and 8 wk. The concentraton of glutathione as well as the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were also found to be significantly increased upon ethanol feeding at all of the treatment intervals. The glutathione levels were found to be further elevated upon combined zinc and ethanol treatments. Interestingly, the administration of zinc to ethanol-fed rats was able to bring down the elevated levels of LP, catalase, SOD, and GPx, thus indicating the antiperoxidative potential of zinc under such conditions.  相似文献   

8.
To study the role of Cd-induced phytochelatins in UV-B tolerance, lipid peroxidation, antioxidative enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), glutathione arid phytochelatin contents were measured in buthionine sulphoximine treated and untreated cells of Anabaena doliolum. Cd-pretreatment of the cyanobacterium reduced the lipid peroxidation as well as the antioxidative enzymes in comparison to UV-B treatment alone, whereas the phytochelatin content demonstrated an increase. In contrast to this, buthionine sulphoximine-induced inhibition of phytochelatin synthase, dramatically decreased the Cd-induced co-tolerance against UV-B, hence demonstrating that phytochelatin not only protects the cyanobacterium from heavy metal but participates in UV-B tolerance as well.  相似文献   

9.
Propolis, a natural beehive product has been known for centuries for a variety of beneficial traditional medicinal properties. The present study was conducted to ascertain the antineoplastic potential of propolis along with paclitaxel against experimental mammary carcinogenesis. Female Sprague Dawley rats at 55 days of age were treated with dimethylbenz(a)anthracene to induce breast cancer. Paclitaxel at a dose of 33 mg/kg body mass intraperitoneally and propolis 50 mg/kg body weight orally was administered to the experimental animals, immediately after the carcinogen treatment and continued until the termination of the study. At the end of the treatment activities of phase I and II xenobiotic metabolizing enzymes and liver marker enzymes were measured. A significant increase in carcinogen activating enzymes, cytochrome P(450), cytochrome b(5) and NADPH cytochrome C reductase with concomitant decrease in phase II enzymes, glutathione transferase and UDP-glucuronyl transferase were observed in animals with mammary cancer. Furthermore there was a significant decrease in alanine aminotransferase, aspartate aminotransferase with a sharp increase in alkaline phosphatase, acid phosphatase and 5' nucleotidase. Propolis treatment caused the activity of these enzymes return to almost normal control levels, indicating the protective effect of propolis against dimethyl benz(a) anthracene induced carcinogenesis. On the basis of the observed results propolis can be considered a promising chemotherapeutic agent and can be administered as an adjuvant with paclitaxel chemotherapy.  相似文献   

10.
Piperine is a major component of black (Piper nigrum Linn) and long pepper (Piper longum Linn) used widely in various systems of traditional medicine. We have evaluated the effect of piperine on mitochondrial tricarboxylic acid cycle and phase I and glutathione-metabolizing enzymes in Benzo(a)pyrene induced experimental lung carcinogenesis in swiss albino mice. Lung cancer bearing mice showed a significant decrease in the activities of mitochondrial enzymes-isocitrate dehydrogenase (ICDH), -ketoglutarate dehydrogenase (KDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and significantly increased NADPH-Cytochorome reductase (NADPH-C reductase), cytochrome P450 (cyt-p450) and cytochrome b5(cyt-b5). The activities of glutathione-metabolizing enzymes glutathione peroxidase(GPx), glutathione reductase (GR) and glucose-6-phospho dehydrogenase(G6PDH) were significantly lowered in lung-cancer bearing mice when compared with control mice. Piperine supplementation to tumour-induced animals significantly lowered the phase-I enzymes (NADPH-C reductase, cyt-p450 and cyt-b5)) and there was a rise in glutathione-metabolizing enzymes (GPx, GR and G6PDH), which indicated an antitumour and anti-cancer effect. Comparison of normal control mice and mice administered piperine only as drug control showed no significant variations in enzyme activities. Piprine administration to benzo(a)pyrene induced animals significantly increased the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.  相似文献   

11.
Contaminant-related changes in antioxidative processes in the freshwater crustacea Daphnia magna exposed to model redox cycling contaminant were assessed. Activities of key antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferases and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) and lipofucsin pigment content were determined in D. magna juveniles after being exposed to sublethal levels of menadione, paraquat, endosulfan, cadmium and copper for 48 h. Results denoted different patterns of antioxidant enzyme responses, suggesting that different toxicants may induce different antioxidant/prooxidant responses depending on their ability to produce reactive oxygen species and antioxidant enzymes to detoxify them. Low responses of antioxidant enzyme activities for menadione and endosulfan, associated with increasing levels of lipid peroxidation and enhanced levels of antioxidant enzyme activities for paraquat, seemed to prevent lipid peroxidation, whereas high levels of both antioxidant enzyme activities and lipid peroxidation were found for copper. For cadmium, low antioxidant enzyme responses coupled with negligible increases in lipid peroxidation indicated low potential for cadmium to alter the antioxidant/prooxidant status in Daphnia. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione S-transferase appeared to be the most responsive biomarkers of oxidative stress.  相似文献   

12.
Summary Barley leaf blade protoplasts accumulate malonaldehyde, a product of lipid peroxidation, during culture. In addition, glutathione levels fall after protoplast isolation and the proportion of glutathione in the oxidized state rises. These data indicate oxidative stress after protoplast isolation and during culture. The cause of this phenomenon is revealed by data showing that the activities of enzymes associated with antioxidative processes including glutathione reductase and ascorbate peroxidase decrease after barley protoplast isolation. In contrast, protoplasts isolated from suspension cultured cells of bromegrass and soybean exhibit little evidence for oxidative stress and increased activities of glutathione reductase and ascorbate peroxidase. We suggest that an antioxidative response is associated with mitosis and colony formation from protoplasts, as exhibited by bromegrass and soybean. Conversely, failure of an antioxidative response is associated with low viability and absence of mitosis, as in barley. Increased viability of barley leaf protoplasts cultured on feeder layer cells is correlated with increased glutathione content and higher glutathione reductase activity.  相似文献   

13.
Treatment of mice and rats with polyriboinosinic acid-polyribocytidylic acid (poly I.C., 5 mg/kg i.p.), a potent interferon inducer, decreased hepatic cytochrome P-450 system content and activities without influencing P-450-independent xenobiotic metabolizing enzymes. Treatment with poly I.C. decreased the content of P-450 by 28% in mice (P less than 0.05) and 30% in rats (P less than 0.05) but did not alter the activity of cytochrome c reductase. With treatment of poly I.C., the activity of XO increased 87% in mice (P less than 0.01) and 30% in rats (P less than 0.01). Lipid peroxidation was enhanced by 82% in mice (P less than 0.01) and 95% in rats (P less than 0.05). These results raise the possibility that a part of the depression of P-450 system content and activities by poly I.C. might be caused by enhanced lipid peroxidation associated with increased activity of XO.  相似文献   

14.
The Syrian hamster Harderian gland, a juxtaorbital organ exhibiting marked gender-associated differences in contents of porphyrins and melatonin, was used as a model system for comparing strong (in females) and moderate (in males) physiological oxidative stress. Histological differences showing much higher cell damage in females were studied in conjunction with lipid peroxidation and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Lipid peroxidation and enzyme activities were measured throughout the circadian cycle, revealing the importance of dynamical processes in oxidative stress. Especially in lipid peroxidation and in catalase, short-lasting rises exhibited strongest gender differences. Peaks of lipid peroxidation were about three times higher in females, compared to males. Catalase peaks of females exceeded those in males by several hundred-fold. Average levels of superoxide dismutase and glutathione peroxidase were about three or two times higher in females, respectively. A clear-cut diurnally peaking rhythm was found in glutathione peroxidase of females, which was not apparent in males. Glutathione reductase showed differences in time patterns, but less in average activities. The time courses of lipid peroxidation and of protective enzymes are not explained by circulating melatonin, whereas melatonin formed in the Harderian gland should contribute to differences in average levels. Neither damage nor antioxidative defense simply reflect the illumination cycle and are, therefore, not only a consequence of photoreactions.  相似文献   

15.
The toxicity induced by 7, 12-dimethylbenz(α)anthracene (DMBA) has been widely delineated by a number of researchers. This potent chemical damages many internal organs including liver, by inducing the production of reactive oxygen species, DNA-adduct formation and affecting the activities of phase I, II, antioxidant and serum enzymes. Glucosinolate hydrolytic products like isothiocyanates (ITCs) are well known for inhibiting the DNA-adduct formation and modulating phase I, II enzymes. Sulforaphane is ITC, currently under phase trials, is readily metabolized and inter-converted into erucin upon ingestion. We isolated erucin from Eruca sativa (Mill.) Thell. evaluated its hepatoprotective role in DMBA induced toxicity in male wistar rats. The rats were subjected to hepatic damage by five day regular intraperitoneal doses of DMBA. At the end of the protocol, the rats were euthanized, their blood was collected and livers were processed. The liver homogenate was analyzed for phase I (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P450, cytochrome P420 and cytochrome b5), phase II (DT diaphorase, glutathione-S-transferase and γ-glutamyl transpeptidase) and antioxidant enzymes (superoxide dismutase, catalase, guaiacol peroxidise, ascorbate peroxidise, glutathione reductase and lactate dehydrogenase). The level of thiobarbituric acid reactive substances, lipid hydroperoxides, conjugated dienes and reduced glutathione in the liver homogenate was also analyzed. The serum was also analyzed for markers indicating hepatic damage (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin). Erucin provided significant protection against DMBA induced damage by modulating the phase I, II and antioxidant enzymes. The histological evaluation of liver tissue was also conducted, which showed the hepatoprotective role of erucin.  相似文献   

16.
To study the role of glutathione reductase in lipid peroxidation, bean leaves (Phaseolus vulgaris) cv Fori were treated with the herbicide acifluorfen-sodium (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Acifluorfen is a potent inducer of lipid peroxidation. In beans, decrease of acid-soluble SH-compounds and lipid peroxidation, measured as ethane evolution, were the toxic events after treatment of leaves with acifluorfen. As a primary response to peroxidation, increased production of antioxidants, such as vitamin C and glutathione, was found. This was followed by elevation of glutathione reductase activity. Enhanced activity of the enzyme prevented both further decline of acid-soluble SH-compounds and lipid peroxidation. Increased production of antioxidants and elevated activity of antioxidative enzymes, like glutathione reductase, seem to be a general strategy to limit toxic peroxidation in plants.  相似文献   

17.
Peculiarities of antioxidant homeostasis of geese brain tissue during embryogenesis and early postnatal period have been studied. It has been shown that the cerebrum and hindbrain tissues are characterized by a higher level of lipid peroxidation compared to liver. Main antioxidative enzymes' activity (superoxide dismutase, catalase, glutathione peroxidase) in the brain already reaches its maximum in the middle period of embryogenesis. We have found that brain tissues are characterized by a lower activity of intracellular enzymes (superoxide dismutase, catalase) but increased glutathione peroxidase activity as compared to liver. The rate of Fe2+ initialized lipid peroxidation and coefficient of antioxidative activity were used as a criterion for evaluation of antioxidative system's status. According to the dynamics of these factors the highest tension of antioxidative system in the brain appears in the period of the contour (28 days) and juvenile (49 days) feather formation.  相似文献   

18.
W G Levine 《Life sciences》1982,31(8):779-784
Depletion of hepatic glutathione leads to an increase in lipid peroxidation and depression of cytochrome P-450-catalyzed metabolism of the azo dye carcinogen, N,N-dimethyl-4-aminoazobenzene. This contributes to the marked decrease in biliary excretion of N-demethylated metabolites of the dye. Parallel time courses are seen for decreased hepatic glutathione, enhanced lipid peroxidation and depressed excretion of dye metabolites. In vitro metabolism of DAB by hepatic 10,000 g supernatant fractions is depressed by iron only after glutathione depletion. In view of the iron requirement for microsomal lipid peroxidation, it is proposed that glutathione depletion leads to an increase in the intracellular iron available for activation of lipid peroxidation. In this way, glutathione may contribute to the regulation of cytochrome P-450 activity.  相似文献   

19.
The chemopreventive potential of cycloartenol on benzoyl peroxide and UVB radiation-induced cutaneous tumor promotion markers and oxidative stress in murine skin is assessed. Benzoyl peroxide treatment (20 mg/animal/0.2 ml acetone) and UVB radiation (0.420 J/m(2)/s) caused a decrease in the activities of cutaneous antioxidant enzymes namely, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, phase II metabolizing enzyme such as glutathione-S-transferase and quinone reductase and depletion in the level of cutaneous glutathione. There was also enhancement in cutaneous microsomal lipid peroxidation, xanthine oxidase activity, [(14)C]-ornithine decarboxylase activity and [(3)H]-thymidine incorporation into cutaneous DNA. Cycloartenol was topically applied prior to the application of benzoyl peroxide at dose levels of 0.2 mg and 0.4 mg/kg body weight in acetone, which resulted in significant inhibition of epidermal ornithine decarboxylase activity and DNA synthesis (P < 0.001). There was also significant reduction of lipid peroxidation and xanthine oxidase activity (P < 0.001). In addition, the depleted levels of glutathione, inhibited activities of antioxidant and phase II metabolizing enzymes, were also recovered to a significant level (P < 0.001). The data indicate that cycloartenol is an effective chemopreventive agent in skin carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号