首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress has been identified as a process which is detrimental to brain health, and associated with age-related cognitive declines. Few studies to-date have examined the relationship between in vivo oxidative stress biomarkers and cognitive performance within healthy elderly populations. The current study investigated the relationship between reaction time and oxidative stress, as measured by blood plasma concentrations of F2-isoprostanes using a sample of 251 healthy, non-demented, elderly volunteers (Male; 111: Female 140) aged 60–75 years from the Australian Research Council Longevity Intervention (ARCLI) study cohort. A Jensen Box was used in conjunction with the Hick paradigm in order to differentiate simple from choice reaction time (two, four and eight-choice conditions) as well as movement (MT) and decision times (DT). MT, but not DT, was found to be significantly slower for participants in the high F2-isoprostane group compared to the low F2-isoprostane group, across all stimulus choices. F2-isoprostanes, age and Wechsler Abbreviated Scale of Intelligence (WASI) full scale intelligence quotient (IQ) were found to be significant predictors of average MT in the sample as a whole. These findings provide preliminary evidence to suggest that higher levels of oxidative stress may be associated with impaired psychomotor speed in the healthy elderly population.  相似文献   

2.
We examined whether a systemic marker of oxidative stress, F2‐isoprostanes (F2‐IPs), was associated with total and regional adiposity, adipocytokines, and change in adiposity. Using data from 726 participants enrolled in the Health, Aging, and Body Composition (Health ABC) study, F2‐IPs and adipocytokines were measured from baseline plasma samples. Total adiposity was measured by whole‐body dual‐energy X‐ray absorptiometry and regional adiposity by abdominal and thigh computed tomography scans at baseline and 5‐year follow‐up. ANOVA models were estimated to examine associations between F2‐IP tertiles and baseline adiposity and changes in body composition. Median F2‐IPs was 54.3 pg/ml; women had significantly higher levels than men (61.5 vs. 48.9 pg/ml, P < 0.001). F2‐IPs were associated with higher levels of adiponectin, leptin, and tumor necrosis factor‐α (TNF‐α). Positive associations were found between F2‐IPs and all measures of total and regional adiposity among women. In linear regression models, adipocytokines mediated associations among women. Over 5 years of follow‐up, women in the highest vs. lowest F2‐IP tertile exhibited significant loss of weight (lowest tertile: ?1.1 kg, highest tertile: ?2.7 kg, P < 0.05). In conclusion, F2‐IPs were associated with measures of total and regional adiposity in women alone and these associations were partially explained by adipocytokines. F2‐IPs predicted loss of total adiposity over time among women.  相似文献   

3.
F2-isoprostanes are not just markers of oxidative stress   总被引:1,自引:0,他引:1  
F(2)-isoprostanes are not just markers of oxidative stress. The discovery of F(2)-isoprostanes (F(2)-IsoPs) as specific and reliable markers of oxidative stress in vivo is briefly summarized here. F(2)-IsoPs are also agonists of important biological effects, such as the vasoconstriction of renal glomerular arterioles, the retinal vessel, and the brain microcirculature. In addition to the F(2)-IsoPs, E(2)- and D(2)-IsoPs can be formed by rearrangement of H(2)-IsoP endoperoxides and can give rise to cyclopentenone IsoPs, which are very reactive alpha,beta-unsaturated aldehydes. The same type of reactivity is also shown by acyclic gamma-ketoaldehydes formed as products of the IsoP pathway. Because previous studies suggested a relation between oxidative stress and collagen hyperproduction, it was investigated whether collagen synthesis is induced by F(2)-IsoPs, the most proximal products of lipid peroxidation. In contrast to aldehydes, F(2)-IsoPs act through receptors able to elicit definite signal transduction pathways. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma F(2)-IsoPs were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of smooth muscle alpha-actin) and then treated with F(2)-IsoPs in the concentration range found in the in vivo studies (10(-9) to 10(-8) M), a striking increase in DNA synthesis, cell proliferation, and collagen synthesis was observed. Total collagen content was similarly increased. All these stimulatory effects were reversed by the specific antagonist of the thromboxane A(2) receptor, SQ 29 548, whereas the receptor agonist, I-BOP, also had a stimulatory effect. Therefore F(2)-IsoPs generated by lipid peroxidation in hepatocytes may mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

4.
5.
Angiotensin (Ang) II induces oxidative stress in vitro and in animal models of hypertension. We tested the hypothesis that Ang II increases oxidative stress in human hypertension, as assessed by plasma F2-isoprostane concentrations. Plasma F2-isoprostanes, hemodynamic and endocrine parameters were measured at baseline and following a 55 min infusion of 3 ng/kg/min Ang II in 13 normotensive and 13 hypertensive volunteers ingesting a high- (200 mmol/d) or low- (10 mmol/d) sodium diet. Mean arterial pressure (MAP) and body mass index were higher in hypertensive subjects. Ang II infusion increased MAP (p<.001) and plasma aldosterone concentrations (p<.001) and decreased plasma renin activity (p<.001) and renal plasma flow (p<.001) to a similar extent in both groups. Plasma F2-isoprostane concentrations were similar at baseline. There was no effect of Ang II on F2-isoprostane concentrations during low-salt intake in either group (normotensive 51.7 +/- 7.1 to 53.7 +/- 6.5 pg/ml and hypertensive 52.2 +/- 8.2 to 56.2 +/- 10.0 pg/ml; mean +/- SE). During high-salt intake, Ang II increased F2-isoprostane concentrations in the hypertensive group (52.3 +/- 7.2 to 63.2 +/- 10.4 pg/ml, p=0.010) but not in the normotensive group (54.2 +/- 4.4 to 58.9 +/- 6.6 pg/ml, p=0.83). Acute Ang II infusion increases oxidative stress in vivo in hypertensive humans. The renin-angiotensin system may contribute to oxidative stress in human cardiovascular disease.  相似文献   

6.
There is considerable evidence that chronic moderate-to-high alcohol consumption increases blood pressure. The mechanisms by which this occurs are not clear. Alcohol consumption can induce oxidative stress and cytochrome P450 (CYP450) isoforms that are associated with oxidative stress and may influence vascular tone. To study the role of such mechanisms we examined whether reducing alcohol intake in moderate-to-heavy drinkers (40-110 g/day) resulted in changes in urinary excretion of 20-HETE, a CYP450 metabolite of arachidonic acid, and plasma and urinary F(2)-isoprostanes as markers of lipid peroxidation. After a 4-week run-in period during which healthy men maintained their usual drinking pattern they were randomized to a two-way crossover intervention study. In each of the 4-week treatment periods subjects either substituted their usual alcohol intake with a 0.9% alcohol beer or maintained their usual alcohol intake. Plasma and urinary F(2)-isoprostanes and urinary 20-HETE were measured by gas chromatography mass spectrometry, and serum gamma-glutamyl transpeptidase (gamma-GT) was measured as a biomarker of alcohol consumption, at the end of each study period. Sixteen healthy men age 51.0+/-2.7 years and with a BMI of 26.4+/-0.61 kg/m(2) completed the study. The reductions in alcohol intake (72.4+/-5.0 vs 7.9+/-1.6 g/day, p<0.001) and serum gamma-GT (geometric mean 24.4 U/L (95% CI 19.7, 30.2) vs 18.6 U/L (95% CI 15.5, 22.2, p<0.01) were accompanied by a significant fall in blood pressure as well as urinary 20-HETE excretion (158+/-23 vs 109+/-19 pmol/mmol creatinine, p<0.001) and plasma F(2)-isoprostanes (3438+/-158 vs 2929+/-145 pmol/L, p=0.01). A substantial reduction in alcohol consumption in healthy men lowered plasma F(2)-isoprostanes and urinary 20-HETE. Increased oxidative stress and 20-HETE production may be linked, at least in part, to the pathogenesis of alcohol-related hypertension.  相似文献   

7.
This study was aimed at investigating oxidative stress in thalassemic patients by measurement of the oxidative damage biomarker, F2-isoprostanes (F2-IsoPs), using gas chromatography-mass spectrometry. The results showed that the mean value of urinary F2-IsoPs, normalized with creatinine, in the thalassemic group was significantly higher than that from healthy subjects (3.38 ± 2.15 ng/mg creatinine vs 0.86 ± 0.55 ng/mg creatinine, respectively), and the mean value of plasma total F2-IsoPs in the thalassemic group was also significantly higher than that from healthy subjects (0.39 ± 0.15 ng/ml vs 0.18 ± 0.03 ng/ml, respectively). Serum ferritin, erythrocyte superoxide dismutase (SOD), glutathione peroxidase, glutathione, and TBARS levels after treatment of erythrocytes with H2O2 were also investigated, and serum ferritin and erythrocyte SOD levels were significantly higher in thalassemic patients. Our findings are consistent with oxidative stress in thalassemia patients.  相似文献   

8.
F(2)-isoprostanes, prostaglandin F(2)-like compounds formed by free radical-catalyzed lipid peroxidation, are considered the most reliable markers of oxidative stress. It has been repeatedly suggested that newborns are exposed to conditions of oxidative stress resulting from the change from a low oxygen pressure in utero to a high oxygen pressure at birth. We measured the levels of F(2)-isoprostanes in plasma of newborns by gas chromatography/mass spectrometry and we found that F(2)-isoprostanes are significantly higher in term newborns compared to healthy adults. The greatest values were found in preterm newborns in whom F(2)-isoprostanes are even higher than in term babies. Moreover a significant inverse correlation was found between the plasma levels of isoprostanes and the gestational age. A quite normal level of isoprostanes was found in the mothers both at delivery and during pregnancy. Placental total F(2)-isoprostanes (sum of free plus esterified) were significantly higher in preterm compared to term deliveries and such a difference might account for the difference in plasma isoprostanes. Plasma non-protein-bound iron is higher in preterm than in term newborns, even if no correlation was found with plasma F(2)-isoprostanes. Erythrocyte desferrioxamine-chelatable iron content (0 time) and release (24 h of aerobic incubation) are higher in newborns than in adults and in preterm than in term newborns, but again no correlation was found with plasma F(2)-isoprostanes. The marked increase in plasma isoprostanes suggests that oxidative stress is a feature of the physiopathological changes seen in the perinatal period.  相似文献   

9.
F(2)-isoprostanes are derived in vivo principally from the following: (1) the formation of positional peroxyl radicals of arachidonic acid, (2) endocyclization to prostaglandin G(2)-like structures, and (3) reduction to PGF(2)-like compounds. F(2)-isoprostanes have been proposed as biomarkers of lipid peroxidation, oxidative stress status, and the oxidation of low-density lipoprotein (LDL). Using gas chromatography-ion trap-mass spectrometry, we studied how hemodialysis (HD) affects plasma total F(2)-isoprostanes. We examined the plasma total F(2)-isoprostanes in end-stage renal disease (ESRD) patients, before HD, after HD, between HD, and in control subjects. Plasma concentrations of total F(2)-isoprostanes were significantly higher in the after HD ESRD patients than the before hemodialysis ESRD patients (P < 0.05). There is no difference between before HD ESRD patients and normal controls. Moreover, a positive or negative correlation was seen between LDL and plasma total F(2)-isoprostanes (P < 0.001), and between age and plasma total F(2)-isoprostanes (P < 0.001). This study indicates HD treatment may be the major contributor of oxidative stress in ESRD patients.  相似文献   

10.
Oxidized lipids such as F2-isoprostanes (F2-IsoPs), hydroxyeicosatetraenoic acid products (HETEs), and cholesterol oxidation products (COPs) are widely believed to be involved in multiple diseases. Usually, each product is measured individually in separate blood samples. In this study we describe a method allowing us to measure F2-IsoPs, HETEs, COPs, and arachidonate using a single sample. Plasma (1 ml) samples from healthy volunteers were diluted with heavy isotopic standards, hydrolyzed in alkali with organic solvent, and then subjected to anionic-exchange solid-phase extraction (SPE). After the SPE column was washed, hexane and hexane/ethyl acetate portions were collected and combined for COPs measurement. Thereafter the column was loaded with hexane/ethanol/acetic acid and fractions were collected for total F2-IsoPs, total HETEs, and arachidonate measurement. All compounds in the eluates were measured by gas chromatography-mass spectrometry. The efficiency of SPE and reproducibility for all compounds measured were high. Levels of total F2-IsoPs (0.45+/-0.26 ng/ml (n=157)), total HETEs (34.06+/-16.35 ng/ml (n=21)), total arachidonate (68.36+/-24.45 microg/ml (n=33)), and COPs (7-ketocholesterol, 12.25+/-6.56 ng/ml; 7beta-hydroxycholesterol, 6.32+/-3.46 ng/ml; 7alpha-hydroxycholesterol, 15.06+/-7.06 ng/ml; 24-hydroxycholesterol, 41.39+/-18.22 ng/ml; and 27-hydroxycholesterol, 29.08+/-16.79 ng/ml (n=26)) were recorded in healthy subjects (age range 20 to 66 years; average male to female ratio 1:1).  相似文献   

11.
Coronary heart disease (CHD) is the leading single cause of death in the United States and most Western countries, killing more than 400,000 Americans per year. Although CHD often manifests suddenly as a fatal myocardial infarction, the atherosclerosis that gives rise to the infarction develops gradually and can be markedly slowed or even reversed through pharmacological and lifestyle interventions. These same atherosclerotic processes also drive related vascular diseases such as stroke and peripheral artery disease, and individuals surviving occlusive events often develop additional complications including ischemic cardiomyopathy and heart failure. Therefore, better detection of subclinical atherosclerosis, along with more effective treatments, could significantly reduce the rate of death from CHD and related vascular diseases in the United States. In recent years, oxidation of polyunsaturated fatty acids (PUFAs) in plasma lipoproteins has been postulated to be a critical step in the development of atherosclerosis. If so, then monitoring lipid peroxidation should be a useful indicator of disease risk and progression. This review focuses on the evidence that specific PUFA peroxidation products, the F(2)-isoprostanes, are useful biomarkers that could potentially be utilized as indicators of CHD.  相似文献   

12.
Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo   总被引:33,自引:0,他引:33  
In 1990 we discovered the formation of prostaglandin F(2)-like compounds, F(2)-isoprostanes (F(2)-IsoPs), in vivo by nonenzymatic free radical-induced peroxidation of arachidonic acid. F(2)-IsoPs are initially formed esterified to phospholipids and then released in free form. There are several favorable attributes that make measurement of F(2)-IsoPs attractive as a reliable indicator of oxidative stress in vivo: (i) F(2)-IsoPs are specific products of lipid peroxidation; (ii) they are stable compounds; (iii) levels are present in detectable quantities in all normal biological fluids and tissues, allowing the definition of a normal range; (iv) their formation increases dramatically in vivo in a number of animal models of oxidant injury; (v) their formation is modulated by antioxidant status; and (vi) their levels are not effected by lipid content of the diet. Measurement of F(2)-IsoPs in plasma can be utilized to assess total endogenous production of F(2)-IsoPs whereas measurement of levels esterified in phospholipids can be used to determine the extent of lipid peroxidation in target sites of interest. Recently, we developed an assay for a urinary metabolite of F(2)-IsoPs, which should provide a valuable noninvasive integrated approach to assess total endogenous production of F(2)-IsoPs in large clinical studies.  相似文献   

13.
F2-isoprostanes (F2-IPs) are formed by the free radical-catalysed oxidation of arachidonic acid. The measurement of F2-IPs, especially 8-epi-PGF2alpha, is recognised as a reliable marker of lipid peroxidation and is currently used as a sensitive index of oxidative stress in vivo. The majority of 8-epi-PGF2alpha present in the circulation occurs in association with lipoproteins which are synthesised in the liver. Since lipoproteins are derived from dietary fatty acids and triglycerides, it is possible that 8-epi-PGF2alpha generated in polyunsaturated fatty acid-rich food (during initial processing/packaging or during meal preparation) may become incorporated within these lipoproteins during synthesis. In view of the growing use of 8-epi-PGF2alpha as a marker of lipid peroxidation in vivo in nutritional or clinical studies, it is therefore important to investigate the possibility that the circulating levels measured could be confounded by the presence of 8-epi-PGF2alpha in food. In this study we evaluated the levels of 8-epi-PGF2alpha present in several popular fast-foods, using a combination of solid phase extraction and gas chromatography-mass spectrometry. Fast-foods were selected to represent meals prepared from vegetable-, chicken-, fish- and meat-derived ingredients. Total (free + esterified) 8-epi-PGF2alpha levels ranged from 0.09 to 0.73 pmol/g (122-644 pmol/mmol arachidonic acid), with the highest levels present in beef-derived meals. Further investigation of hamburgers and cheeseburgers revealed 8-epi-PGF2alpha levels of 1.83 +/- 0.24 and 0.84 +/- 0.03nmol/mmol arachidonic acid, respectively. Lower concentrations of vitamin E were found in the hamburgers. The postprandial contribution to plasma 8-epi-PGF2alpha levels following ingestion of 100 g portions of these fast-foods would therefore be expected to be no greater than the low picomole range, and would be unlikely to influence the normal endogenous levels of 8-epi-PGF2alpha and those produced during oxidative stress.  相似文献   

14.
Phytase enzyme is used as a dietary supplement in broiler nutrition to improve phosphorous bioavailability. Phytase deliberates phosphate groups from phytic acid and produces myo-inositol after total dephosphorylation. Myo-inositol is a bioactive compound having beneficial modulatory effects on metabolism in humans. However, it is not well understood if and how phytic acid degradation products, particularly myo-inositol, can modulate metabolism in broiler chicken. The purpose of this study was to investigate effects of dietary supplements of phytase and myo-inositol on the blood plasma metabolome profile of broiler chickens. Broilers were provided a nutrient-adequate control diet or the same diet supplemented with either 3.5 g myo-inositol or 500, 1500 or 3000 units of phytase, per kilogram of feed (grower diet). Broilers were group-housed in floor pens (eight pens per diet) and provided one of the treatment diets for 22 days. Then, blood was collected from one bird per pen, resulting in eight replicated measurements per diet. A targeted metabolomics approach was applied to the heparin plasma. Body weight of the birds was not significantly affected by the treatments. Plasma myo-inositol concentrations were significantly increased by myo-inositol supplementation and phytase supplementation at 500 and 1500 units/kg. Metabolites generally affected by phytase supplementation belonged to the groups of acyl-carnitines, phosphatidylcholines, sphingomyelins, lysophosphatidylcholine, biogenic amines and amino acids. Compared to the control diet, phytase supplements had significantly higher plasma concentrations of kynurenine and creatinine, but lower concentrations of histamine and cis-4-hydroxyproline. Myo-inositol supplementation significantly increased plasma concentrations of dopamine and serotonine. While some metabolites were similarly affected by myo-inositol and phytase supplementation, others were distinctly differently affected. We conclude that myo-inositol, either as a directly added supplement or indirectly released from phytate upon phytase supplementation, can affect specific metabolic pathways. Additional effects found on phytase supplementation may be related to intermediary phytate degradation products. Results are indicative for innovative hypothesis to be tested in future experiments, for instance, with regard to relationships between phytase or myo-inositol supplements and bird immunity or behaviour.  相似文献   

15.
Low concentrations of selenium (Se) predict mortality and cardiovascular diseases in some populations. The effect of Se on in vivo indicators of oxidative stress and inflammation, two important features of atherosclerosis, in human populations is largely unexplored. This study investigated the longitudinal association between serum selenium (s-Se) and a golden standard indicator of oxidative stress in vivo (8-iso-prostaglandin F2alpha, a major F2-isoprostane), an indicator of cyclooxygenase (COX)-mediated inflammation (prostaglandin F2alpha), high sensitive C-reactive protein (hsCRP), interleukin-6 (IL-6) and serum amyloid A protein (SAA) in a follow-up study of 27 years. The s-Se was measured in 615 Swedish men at 50 years of age in a health investigation. The status of oxidative stress and inflammation was evaluated in a re-investigation 27 years later by quantification of urinary 8-iso-PGF2alpha and 15-keto-dihydro-PGF2alpha (a major metabolite of PGF2alpha) and serum hsCRP, SAA and IL-6. Men in the highest quartile of s-Se at age 50 had decreased levels of 8-iso-PGF2alpha compared to all lower quartiles and decreased levels of PGF2alpha compared to all lower quartiles at follow-up. These associations were independent of BMI, diabetes, hyperlipidemia, hypertension, smoking, alpha-tocopherol and beta-carotene at baseline. The s-Se was not associated with hsCRP, SAA or IL-6 at follow-up. In conclusion, high concentrations of s-Se predict reduced levels of oxidative stress and subclinical COX-mediated (but not cytokine-mediated) inflammation in a male population. The associations between Se, oxidative stress and inflammation, respectively, might be related to the proposed cardiovascular protective property of Se.  相似文献   

16.
We have developed an improved method for the measurement of F2-isoprostanes using stable isotope dilution capillary gas chromatography/electron capture negative ionization mass spectrometry (GC-ECNI-MS). The F2-isoprostane family consists of a series of chemically stable prostaglandin F2 (PGF2)-like compounds generated during peroxidation of arachidonic acid in phospholipids. There is evidence that measurement of F2-isoprostanes represents a reliable and useful index of lipid peroxidation and oxidant stress in vivo. Furthermore, 8-epi-PGF2alpha, which is one of the more abundant F2-isoprostanes, is biologically active, being a potent mitogen and vasoconstrictor of rat and rabbit lung and kidney, as well as a partial agonist of platelet aggregation. Measurement of F2-isoprostanes in biological samples is complex and has involved methods which utilize multiple chromatographic steps, including separation by thin-layer chromatography, leading to poor sample recovery. We now present an improved method for the measurement of plasma and urinary F2-isoprostanes using a combination of silica and reverse-phase extraction cartridges, high-performance liquid chromatography (HPLC), and GC-ECNI-MS. Different approaches to the derivatization of the F2-isoprostanes prior to GC-ECNI-MS are also addressed. The overall recovery of F2-isoprostanes is improved (approx 70% for urine) and the within and between assay reproducibility is 6.7% (n = 23) and 3.7% (n = 3), respectively. The mean urinary excretion of F2-isoprostanes in eight healthy males was 365 +/- 5 pmol/mmol creatinine and in three smokers 981 +/- 138 pmol/mmol creatinine. The mean total (free + esterified) plasma F2-isoprostane concentration was 952 +/- 38 pmol/liter, with a within and between assay reproducibility of 8% (n = 13) and 5.6% (n = 3), respectively. This improved method for the measurement of F2-isoprostanes represents a significant advance in terms of the rapidity and yield in the purification of biological samples. The inclusion of HPLC separation enables improved analysis of F2-isoprostanes by GC-MS. This methodology will assist in defining the role of F2-isoprostanes as in vivo markers of oxidant stress in clinical and experimental settings.  相似文献   

17.
18.
F2-isoprostanes as indices of lipid peroxidation in inflammatory diseases   总被引:6,自引:0,他引:6  
Isoprostanes are a new class of lipids, isomers of conventional enzymatically derived prostaglandins, which are produced in vivo primarily by a free radical-catalyzed peroxidation of polyunsaturated fatty acids. F2-isoprostanes, isomers of the enzyme-derived prostaglandin F2alpha, are the most studied species. Because of their mechanisms of formation, specific structural features that distinguish them from other free radical-generated products and chemical stability, they provide a reliable index of the oxidative component of several diseases in vivo. Consistent data suggest that formation of F2-isoprostanes is indeed altered in a variety of clinical settings associated with inflammation and oxidant stress. Moreover, measurement of F2-isoprostanes might provide a sensitive biochemical basis of dose-selection in studies of natural and synthetic antioxidants.  相似文献   

19.
Chronic renal failure patients on long-term hemolysis are found to be under increased oxidative stress, caused by antioxidant deficiency, neutrophil activation during hemodialysis (HD), platelet activation and/or chronic inflammation. Increased levels of oxidants (e.g. malondialdehyde, 4-hydroxynonenal, hydrocarbons, lipohydroperoxides, oxycholesterols, carbonyls) in HD patients are thought to play an important role in the development of endothelial dysfunction, atherogenesis and cardiovascular disease, which is a frequent condition in end-stage renal disease. F2-isoprostanes have been established as chemically stable, highly specific and reliable biomarkers of in vivo oxidative stress which can very sensitively measured by gas chromatography-mass spectrometry (Morrow et al. [17]). An up to 6-fold increase of plasma F2-isoprostanes in HD patients is accompanied by an enhanced formation of indicators of inflammation (e.g. C-reactive protein) and decreases of endogenous antioxidants (e.g. ascorbate, alpha-tocopherol). In their esterified form F2-isoprostanes may be a useful criteria to evaluate the effectiveness of clinical interventions to diminish oxidant stress and associated inflammation. Furthermore, F2-isoprostanes possess potent biological activities (e.g. 8-iso-PGF2alpha is known as a renal vasoconstrictor) suggesting that they may also act as mediators of the cellular effects of oxidative stress and inflammation.  相似文献   

20.
Orange juice, a rich source of vitamin C, accounts for 60% of all fruit juices and juice-based drinks consumed in western Europe. Orange juice preservation is currently accomplished by traditional pasteurization. Pulsed electric fields (PEF) have been studied as a nonthermal food preservation method. Food technology needs in the area of processing are driven by nutrition. Therefore, the objectives of this study were to assess the bioavailability of vitamin C from pulsed electric fields-treated orange juice in comparison with freshly squeezed orange juice and its impact on 8-epiPGF(2alpha) concentrations (biomarker of lipid peroxidation) in a healthy human population. Six subjects consumed 500 mL/day of pulsed electric fields-treated orange juice and six subjects consumed 500 mL/day of freshly squeezed orange juice for 14 days, corresponding to an intake of about 185 mg/day of ascorbic acid. On the first day of the study, subjects drank the juice in one dose, and on days 2-14 they consumed 250 mL in the morning and 250 mL in the afternoon. Blood was collected every hour for 6 hours on the first day and again on days 7 and 14. In the dose-response study, the maximum increase in plasma vitamin C occurred 4 hours postdose. Vitamin C remained significantly higher on days 7 and 14 in both orange juice groups. Plasma 8-epiPGF(2alpha) concentrations was lower at the end of the study (P < 0.001) in both groups. Plasma levels of vitamin C and 8-epiPGF(2alpha) were inversely correlated. Pulsed electric fields-preservation of orange juice retains the vitamin C bioavailability and antioxidant properties of fresh juice with a longer shelf-life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号