首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon and nitrogen (C/N) metabolism and allocation within the plant have important implications for plant-parasite interactions. Many plant parasites manipulate the host by inducing C/N changes that benefit their own survival and growth. Plant resistance can prevent this parasite manipulation. We used the wheat-Hessian fly (Mayetiola destructor) system to analyze C/N changes in plants during compatible and incompatible interactions. The Hessian fly is an insect but shares many features with plant pathogens, being sessile during feeding stages and having avirulence (Avr) genes that match plant resistance genes in gene-for-gene relationships. Many wheat genes involved in C/N metabolism were differentially regulated in plants during compatible and incompatible interactions. In plants during compatible interactions, the content of free carbon-containing compounds decreased 36%, whereas the content of free nitrogen-containing compounds increased 46%. This C/N shift was likely achieved through a coordinated regulation of genes in a number of central metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and amino-acid synthesis. Our data on plants during compatible interactions support recent findings that Hessian fly larvae create nutritive cells at feeding (attack) sites and manipulate host plants to enhance their own survival and growth. In plants during incompatible interactions, most of the metabolic genes examined were not affected or down-regulated.  相似文献   

2.
植物间的相互作用是生态学领域关注的重要方向之一,其对高效利用养分资源、提高生产力以及构建植物群落均具有重要意义。丛枝菌根真菌是重要的植物互惠共生微生物,其菌丝可以将邻近植物的根部连接起来,形成共同的菌丝网络(CMNs),这些网络对转移养分、水分以及调节植物群落具有重要作用。近期的研究表明,CMNs可以充当植物之间传递病害和蚜虫诱导信号的通道,并激活邻近植物(未受感染)的化学防御。本文围绕最新的CMNs在植物相互作用中的研究成果,总结了影响CMNs规模及其功能活性的主要因素,阐述了CMNs在植物间养分、水分转移及再分配中的作用,并对CMNs在地下化学信号交流、幼苗建植及群落构建的作用机制进行了系统回顾,最后展望了该研究领域中存在的问题,旨在为进一步理解CMNs在植物互作中的生态学功能提供参考。  相似文献   

3.
Lipid peroxide‐derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage‐inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR‐OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild‐type under Al stress. Exogenous application of 4‐hydroxy‐2‐nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild‐type plants. GR‐OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2O2 due to Al stress in GR‐OE plants was lower by 26% than in wild‐type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)‐2‐heptenal and n‐octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.  相似文献   

4.
In a recent report, it was claimed that azuki beans (Vigna angularis) do not synthesize phytochelatins (PCs) upon exposure to cadmium, although glutathione (GSH), the substrate for PC synthesis, is present in this plant. This legume species thus would be the first exception in the plant kingdom that would fail to complex heavy metals by PCs. Here, we report that not GSH, but only homoglutathione can be detected in this plant and that homo-phytochelatins are formed when azuki beans are challenged with heavy metals such as cadmium. We also show that the 5,5'-dithiobis(2-nitrobenzoic acid)-oxidized GSH reductase recycling assay, used for GSH quantification in the recent study of heavy metal tolerance in azuki beans, reacts both with GSH and homoglutathione and therefore cannot be used when biological samples should be analyzed exclusively for GSH.  相似文献   

5.
Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants   总被引:1,自引:0,他引:1  
A hydroponic experiment was conducted to determine the possible effect of exogenous glutathione (GSH) in alleviating chromium (Cr) stress through examining plant growth, chlorophyll contents, antioxidant enzyme activity, and lipid peroxidation in rice seedlings exposed to Cr toxicity. The results showed that plant growth and chlorophyll content were dramatically reduced when rice plants were exposed to 100 μM Cr. Addition of GSH in the culture solution obviously alleviated the reduction of plant growth and chlorophyll content. The activities of some antioxidant enzymes, including superoxide dismutase, catalase (CAT) and glutathione reductase in leaves, and CAT and glutathione peroxidase in roots showed obvious increase under Cr stress. Addition of GSH reduced malondialdehyde accumulation and increased the activities of these antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, exogenous GSH caused significant decrease of Cr uptake and root-to-shoot transport in the Cr-stressed rice plants. It can be assumed that GSH is involved in Cr compartmentalization in root cells.  相似文献   

6.
Inbreeding is common in flowering plants, but relatively few studies have examined its effects on interactions between plants and other organisms, such as herbivores and pathogens. In a recent paper, we documented effects of inbreeding depression on plant volatile signaling phenotypes, including elevated constitutive volatile emissions (and consequently greater herbivore recruitment to inbred plants) but reduced emission of key herbivore-induced volatiles that attract predatory and parasitic insects to damaged plants. While the effects of inbreeding on plant-insect interactions have been explored in only a few systems, even less is known about its effects on plant-pathogen interactions. Here we report the effects of inbreeding on horsenettle susceptibility to powdery mildew (Oidium neolycopersici), including more rapid onset of infection in inbred plants, particularly when plants were not previously damaged. These data suggest that inbreeding may increase plant susceptibility to pathogen infection and, therefore, may potentially facilitate pathogen establishment in natural populations.  相似文献   

7.
General circulation models on global climate change predict increase in surface air temperature and changes in precipitation. Increases in air temperature (thus soil temperature) and altered precipitation are known to affect the species composition and function of soil microbial communities. Plant roots interact with diverse soil organisms such as bacteria, protozoa, fungi, nematodes, annelids and insects. Soil organisms show diverse interactions with plants (eg. competition, mutualism and parasitism) that may alter plant metabolism. Besides plant roots, various soil microbes such as bacteria and fungi can produce volatile organic compounds (VOCs), which can serve as infochemicals among soil organisms and plant roots. While the effects of climate change are likely to alter both soil communities and plant metabolism, it is equally probable that these changes will have cascading consequnces for grazers and subsequent food web components aboveground. Advances in plant metabolomics have made it possibile to track changes in plant metabolomes as they respond to biotic and abiotic environmental changes. Recent developments in analytical instrumentation and bioinformatics software have established metabolomics as an important research tool for studying ecological interactions between plants and other organisms. In this review, we will first summarize recent progress in plant metabolomics methodology and subsequently review recent studies of interactions between plants and soil organisms in relation to climate change issues.  相似文献   

8.
We investigated the responses of wild-type Arabidopsis thaliana plants to the excess of Cu under conditions of the changed intracellular level of reduced glutathione (GSH) after application of buthionine sulfoximine (BSO) or exogenous GSH to the nutrient solution. BSO (500 μM) decreased and exogenous GSH (500 μM) increased GSH level, while increasing Cu concentration (from 5 to 50 μM) resulted in a decreased GSH content in the roots, but in its increased content in the shoots. BSO did not affect plant growth in contrast to exogenous GSH and Cu, which significantly reduced plant fresh weight. Both Cu and BSO or GSH induced changes in the root structure and leaf chloroplasts ultrastructure. Cu did not induce phytochelatin accumulation. Application of BSO or exogenous GSH did not significantly affect either the GSH level in the Cu-treated plants (except for 50/50 and 50/500 μM/μM Cu/GSH treatments increasing intracellular GSH content in the roots) or Cu toxicity to plants. These results suggest that GSH is not directly involved in Cu detoxification and tolerance in A. thaliana, yet it influences the proper anatomical structure of plants.  相似文献   

9.
高等植物重金属耐性与超积累特性及其分子机理研究   总被引:50,自引:0,他引:50       下载免费PDF全文
由于重金属污染日益严重, 重金属在土壤物系统中的行为引起了人们的高度重视。高等植物对重金 属的耐性与积累性, 已经成为污染生态学研究的热点。近年来, 由于分子生态学等学科的发展, 有关植物对重金属的解毒和耐性机理、重金属离子富集机制的研究取得了较大进展。高等植物对重金属的耐性和积累在种间和基因型之间存在很大差异。根系是重金 属等土壤污染物进入植物的门户。根系分泌物改变重金属的生物有效性和毒性, 并在植物吸收重金属的过程中发挥重要作用。土壤中的大部分重金属离子都是通过金属转运蛋白进入根细胞, 并在植物体内进一步转运至液泡贮存。在重金属胁迫条件下植物螯合肽 (PC) 的合成是植物对胁迫的一种适应性反应。耐性基因型合成较多的PC, 谷胱甘肽 (GSH) 是合成PC的前体, 重金属与PC螯合并转移至液泡中贮存, 从而达到解毒效果。金属硫蛋白 (MTs) 与PC一样, 可以与重金属离子螯合, 从而降低重金属离子的毒性。该文从分子水平上论述了根系分泌物、金属转运蛋白、MTs、PC、GSH在重金属耐性及超积累性中的作用, 评述了近 10年来这方面的研究进展, 并在此基础上提出存在的问题和今后研究的重点。  相似文献   

10.
Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-A resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.  相似文献   

11.
Trichoderma: the genomics of opportunistic success   总被引:2,自引:0,他引:2  
Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.  相似文献   

12.
Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted gamma-glutamylcysteine synthetase (gamma-ECS), foliar levels of GSH were raised threefold. Paradoxically, increased GSH biosynthetic capacity in the chloroplast resulted in greatly enhanced oxidative stress, which was manifested as light intensity-dependent chlorosis or necrosis. This phenotype was associated with foliar pools of both GSH and gamma-glutamylcysteine (the immediate precursor to GSH) being in a more oxidized state. Further manipulations of both the content and redox state of the foliar thiol pools were achieved using hybrid transgenic plants with enhanced glutathione synthetase or glutathione reductase activity in addition to elevated levels of gamma-ECS. Given the results of these experiments, we suggest that gamma-ECS-transformed plants suffered continuous oxidative damage caused by a failure of the redox-sensing process in the chloroplast.  相似文献   

13.
14.
《Trends in microbiology》2023,31(6):616-628
Microorganisms colonizing the plant rhizosphere and phyllosphere play crucial roles in plant growth and health. Recent studies provide new insights into long-distance communication from plant roots to shoots in association with their commensal microbiome. In brief, these recent advances suggest that specific plant-associated microbial taxa can contribute to systemic plant responses associated with the enhancement of plant health and performance in face of a variety of biotic and abiotic stresses. However, most of the mechanisms associated with microbiome-mediated signal transduction in plants remain poorly understood. In this review, we provide an overview of long-distance signaling mechanisms within plants mediated by the commensal plant-associated microbiomes. We advocate the view of plants and microbes as a holobiont and explore key molecules and mechanisms associated with plant–microbe interactions and changes in plant physiology activated by signal transduction.  相似文献   

15.
Nematode resistance in plants: the battle underground   总被引:1,自引:0,他引:1  
Parasitic nematodes infect thousands of plant species, but some plants harbor specific resistance genes that defend against these pests. Several nematode resistance genes have been cloned in plants, and most resemble other plant resistance genes. Nematode resistance is generally characterized by host plant cell death near or at the feeding site of the endoparasitic worm. The timing and localization of the resistance response varies with the particular resistance gene and nematode interaction. Although there is genetic evidence that single genes in the nematode can determine whether a plant mounts a resistance response, cognate nematode effectors corresponding to a plant resistance gene have not been identified. However, recent progress in genetics and genomics of both plants and nematodes, and developments in RNA silencing strategies are improving our understanding of the molecular players in this complex interaction. In this article, we review the nature and mechanisms of plant-nematode interactions with respect to resistance in plants.  相似文献   

16.
Glutathione (GSH; glutamylcysteinyl glycine) is an abundant and ubiquitous thiol with proposed roles in the storage and transport of reduced sulphur, the synthesis of proteins and nucleic acids and as a modulator of enzyme activity. The level of glutathione has also been shown to correlate with the adaptation of plants to extremes of temperature, in the tolerance of plants to xenobiotics and to biotic and abiotic environmental stresses. In addition, the size of the reduced glutathione pool shows marked alterations in response to a number of environmental conditions. Taken together, these findings have prompted intense efforts to characterize in detail the mechanisms underlying glutathione homeostasis in plants and to elucidate the role of these responses in the strategies plants have evolved to adapt to environmental stresses. The aim of this review is to assess recent biochemical, molecular, genetic, and physiological advances which are increasing our understanding of the mechanisms by which plant glutathione homeostasis is controlled and the role of glutathione in the integration of cellular processes with plant growth and development under stress.  相似文献   

17.
Methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates, is used as a substrate by glyoxalase I. In this paper, we report on the estimation of MG level in plants which has not been reported earlier. We show that MG concentration varies in the range of 30-75 microM in various plant species and it increases 2- to 6-fold in response to salinity, drought, and cold stress conditions. Transgenic tobacco underexpressing glyoxalase I showed enhanced accumulation of MG which resulted in the inhibition of seed germination. In the glyoxalase I overexpressing transgenic tobacco, MG levels did not increase in response to stress compared to the untransformed plants, however, with the addition of exogenous GSH there was a decrease in MG levels in both untransformed and transgenic plants. The exogenous application of GSH reduced MG levels in WT to 50% whereas in the transgenic plants a 5-fold decrease was observed. These studies demonstrate an important role of glyoxalase I along with GSH concentration in maintaining MG levels in plants under normal and abiotic stress conditions.  相似文献   

18.
SignificanceThe multifaceted functions of reduced glutathione (gamma-glutamyl–cysteinyl–glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions.Recent advancesThe intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about −300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment.Critical issuesThe concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined.Future directionsThe nuclear GSH pool provides an appropriate redox environment for essential nuclear functions. Future work will focus on how this essential thiol interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus are keep steps to unravelling the complexities of nuclear redox controls.  相似文献   

19.
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, γ-glutamate cysteine ligase (GSH1), responsible for synthesis of γ-glutamylcysteine (γ-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by γ-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of γ-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by γ-EC in vitro strongly suggests export of γ-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, γ-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.  相似文献   

20.
It is commonly known that animal pathogens often target and suppress programmed cell death (pcd) pathway components to manipulate their hosts. In contrast, plant pathogens often trigger pcd. In cases in which plant pcd accompanies disease resistance, an event called the hypersensitive response, the plant surveillance system has learned to detect pathogen-secreted molecules in order to mount a defence response. In plants without genetic disease resistance, these secreted molecules serve as virulence factors that act through largely unknown mechanisms. Recent studies suggest that plant bacterial pathogens also secrete antiapoptotic proteins to promote their virulence. In contrast, a number of fungal pathogens secrete pcd-promoting molecules that are critical virulence factors. Here, we review recent progress in determining the role and regulation of plant pcd responses that accompany both resistance and susceptible interactions. We also review progress in discerning the mechanisms by which plant pcd occurs during these different interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号