首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial dysfunction and oxidative stress are considered central in dopaminergic neurodegeneration in Parkinson's disease (PD). Oxidative stress occurs when the endogenous antioxidant systems are overcome by the generation of reactive oxygen species (ROS). A plausible source of oxidative stress, which could account for the selective degeneration of dopaminergic neurons, is the redox chemistry of dopamine (DA) and leads to the formation of ROS and reactive dopamine-quinones (DAQs). Superoxide dismutase 2 (SOD2) is a mitochondrial enzyme that converts superoxide radicals to molecular oxygen and hydrogen peroxide, providing a first line of defense against ROS. We investigated the possible interplay between DA and SOD2 in the pathogenesis of PD using enzymatic essays, site-specific mutagenesis, and optical and high-field-cw-EPR spectroscopies. Using radioactive DA, we demonstrated that SOD2 is a target of DAQs. Exposure to micromolar DAQ concentrations induces a loss of up to 50% of SOD2 enzymatic activity in a dose-dependent manner, which is correlated to the concomitant formation of protein aggregates, while the coordination geometry of the active site appears unaffected by DAQ modifications. Our findings support a model in which DAQ-mediated SOD2 inactivation increases mitochondrial ROS production, suggesting a link between oxidative stress and mitochondrial dysfunction.  相似文献   

2.
It is believed that both mitochondrial dysfunction and oxidative stress play important roles in the pathogenesis of Parkinson's disease (PD). We studied the effect of chronic systemic exposure to the mitochondrial inhibitor rotenone on the uptake, content, and release of striatal neurotransmitters upon neuronal activity and oxidative stress, the latter simulated by H(2)O(2) perfusion. The dopamine content in the rat striatum is decreased simultaneously with the progressive loss of tyrosine hydroxylase (TH) immunoreactivity in response to chronic intravenous rotenone infusion. However, surviving dopaminergic neurons take up and release only a slightly lower amount of dopamine (DA) in response to electrical stimulation. Striatal dopaminergic neurons showed increased susceptibility to oxidative stress by H(2)O(2), responding with enhanced release of DA and with formation of an unidentified metabolite, which is most likely the toxic dopamine quinone (DAQ). In contrast, the uptake of [(3)H]choline and the electrically induced release of acetylcholine increased, in coincidence with a decline in its D(2) receptor-mediated dopaminergic control. Thus, oxidative stress-induced dysregulation of DA release/uptake based on a mitochondrial deficit might underlie the selective vulnerability of dopaminergic transmission in PD, causing a self-amplifying production of reactive oxygen species, and thereby contributing to the progressive degeneration of dopaminergic neurons.  相似文献   

3.
There is evidence to suggest that dopamine (DA) oxidizes to form dopamine ortho-quinone (DAQ), which binds covalently to nucleophilic sulfhydryl groups on protein cysteinyl residues. This reaction has been shown to inhibit dopamine uptake, as well as other biological processes. We have identified specific cysteine residues in the human dopamine transporter (hDAT) that are modified by this electron-deficient substrate analog. DAQ reactivity was inferred from its effects on the binding of [(3)H]2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (beta-CFT) to hDAT cysteine mutant constructs. One construct, X5C, had four cysteines mutated to alanine and one to phenylalanine (Cys(90)A, Cys(135)A, C306A, C319F and Cys(342)A). In membrane preparations 1 mM DAQ did not affect [(3)H]beta-CFT binding to X5C hDAT, in contrast to its effect in wild-type hDAT in which it reduced the B:(max) value by more than half. Wild-type cysteines were substituted back into X5C, one at a time, and the ability of DAQ to inhibit [(3)H]beta-CFT binding was assessed. Reactivity of DAQ with Cys(90) increased the affinity of [(3)H]beta-CFT for the transporter, whereas reactivity with Cys(135) decreased the affinity of [(3)H]beta-CFT. DAQ did not change the K:(D) for [(3)H]beta-CFT binding to wild-type. The reactivity of DAQ at Cys(342) decreased B:(max) to the same degree as wild-type. The latter result suggests that Cys(342) is the wild-type residue most responsible for DAQ-induced inhibition of [(3)H]beta-CFT binding.  相似文献   

4.
5.
Oxidative stress and mitochondrial dysfunction, especially at the level of complex I of the electronic transport chain, have been proposed to be involved in the pathogenesis of Parkinson disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine (DA) and produce various toxic molecules, i.e., free radicals and quinone species (DAQ). It has been shown that DA oxidation products can induce various forms of mitochondrial dysfunction, such as mitochondrial swelling and decreased electron transport chain activity. In the present work, we analyzed the potentially toxic effects of DAQ on mitochondria and, specifically, on the NADH and GSH pools. Our results demonstrate that the generation of DAQ in isolated respiring mitochondria triggers the opening of the permeability transition pore most probably by inducing oxidation of NADH, while GSH levels are not affected. We then characterized in vitro, by UV and NMR spectroscopy, the reactivity of different DA-derived quinones, i.e., dopamine-o-quinone (DQ), aminochrome (AC) and indole-quinone (IQ), toward NADH and GSH. Our results indicate a very diverse reactivity for the different DAQ studied that may contribute to unravel the complex molecular mechanisms underlying oxidative stress and mitochondria dysfunction in the context of PD.  相似文献   

6.
Among various types of neurons affected in Parkinson’s disease, dopamine (DA) neurons of the substantia nigra undergo the most pronounced degeneration. Products of DA oxidation and consequent cellular damage have been hypothesized to contribute to neuronal death. To examine whether elevated intracellular DA will selectively predispose the dopaminergic subpopulation of nigral neurons to damage by an oxidative insult, we first cultured rat primary mesencephalic cells in the presence of rotenone to elevate reactive oxygen species. Although MAP2+ neurons were more sensitive to rotenone-induced toxicity than type 1 astrocytes, rotenone affected equally both DA (TH+) neurons and MAP2+ neurons. In contrast, when intracellular DA concentration was elevated, DA neurons became selectively sensitized to rotenone. Raising intracellular DA levels in primary DA neurons resulted in dopaminergic neuron death in the presence of subtoxic concentrations of rotenone. Furthermore, mitochondrial superoxide dismutase mimetic, manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, blocked activation of caspase-3, and consequent cell death. Our results demonstrate that an inhibitor of mitochondrial complex I and increased cytosolic DA may cooperatively lead to conditions of elevated oxidative stress and thereby promote selective demise of dopaminergic neurons.  相似文献   

7.
The effects of hypoxia (10% O2, 90% N2) on the content, biosynthesis, and turnover of noradrenaline (NA) and 3,4-dihydroxyphenylethylamine (dopamine, DA) in the rat brain were examined. Up to 24 h following exposure to hypoxia, NA content in the whole brain was decreased, whereas DA content remained unchanged. The accumulation of 3,4-dihydroxyphenylalanine (DOPA) after central decarboxylase inhibition was decreased. The turnover rate of DA after synthesis inhibition was markedly decreased up to 8 h and returned to the control level within 24 h. In contrast, the turnover rate of NA was all but unchanged, except for a 4-h exposure. The 2-h exposure to the hypoxic environment resulted in a significant decrease in NA content and DOPA accumulation in all brain regions tested, but no significant change was observed in DA content. The turnover rate of DA was remarkably decreased in all brain regions tested, whereas the rate of NA was slightly decreased only in the cerebral cortex and hippocampus. These results suggest that although hypoxia decreases the biosynthesis of both NA and DA, the effects of oxygen depletion on the functional activities of NA neurons differ considerably from those of DA neurons: Only in the cerebral cortex and hippocampus are the NA neurons slightly sensitive to hypoxia, whereas the DA neurons are most sensitive in all brain regions.  相似文献   

8.
The diverse damaging effects of dopamine (DA) oxidation products on brain subcellular components including mitochondrial electron transport chain have been implicated in dopaminergic neuronal death in Parkinson's disease. It has been shown in this study that DA (50–200?μM) causes dose-dependent inhibition of Na+, K+-ATPase activity of rat brain crude synaptosomal–mitochondrial fraction during in vitro incubation up to 2?h. The enzyme inactivation is prevented by catalase and the metal-chelator (diethylenetriamine penta-acetic acid) but not by superoxide dismutase or hydroxyl-radical scavengers like mannitol and dimethylsulphoxide (DMSO). Further, reduced glutathione and cysteine, markedly prevent DA-mediated inactivation of Na+, K+-ATPase. Under similar conditions of incubation, DA (200?μM) leads to the formation of quinoprotein adducts (protein-cysteinyl catechol) with synaptosomal–mitochondrial proteins and the phenomenon is also prevented by glutathione (5?mM) or cysteine (5?mM).

The available data imply that the inactivation of Na+, K+-ATPase in this system involves both H2O2 and metal ions. The reactive quinones by forming adducts with protein thiols also probably contribute to the process, since reduced glutathione and cysteine which scavenge quinones from the system protect Na+, K+-ATPase from DA-mediated damage. The inactivation of neuronal Na+, K+-ATPase by DA may give rise to various toxic sequelae with potential implications for dopaminergic cell death in Parkinson's disease.  相似文献   

9.
帕金森病(Parkinson’s disease,PD)主要症状是由中脑黑质致密部(substantia nigra compact,SNc)的多巴胺(dopamine,DA)神经元死亡引起。帕金森病发病过程中,路易小体病理(Lewy pathology,LP)和线粒体功能障碍最为突出,但SNc 多巴胺神经元为什么特别易遭受这两种病理损害尚不清楚。研究表明,与脑内其他神经元相比,SNc 多巴胺神经元具有特殊的解剖形态、生理和生化表型。SNc 多巴胺神经元具有高分支无髓鞘轴突和众多的突触终端,突触末梢物质和能量代谢的高要求需要大量的线粒体,巨大突触终端增加了突触蛋白质的表达、转运和降解的负担。SNc 多巴胺神经元具有独特的自主起搏电活动和缓慢钙振荡特性,Cav1-3钙通道活动及后续的级联反应增加了SNc 多巴胺神经元线粒体负担,增加了基础氧化应激、线粒体损伤和自噬,降低了处理错误折叠蛋白质的能力。SNc 多巴胺神经元特有的神经递质——多巴胺易被氧化成为反应性醌,具有潜在毒性,可破坏葡糖脑苷脂酶导致其活性降低,引起线粒体氧化应激和溶酶体功能障碍。总之,SNc 多巴胺神经元具有的这些内在因素综合起来,可能导致了其对线粒体功能障碍和路易小体病理损伤的易感性,并且SNc 多巴胺神经元所处的神经网络障碍也促使了帕金森病的进展。认识到这些特征会对研究帕金森病相关病理学机制和阻止疾病进展创造新的机会。  相似文献   

10.
帕金森病(Parkinson’s disease,PD)主要症状是由中脑黑质致密部(substantia nigra compact,SNc)的多巴胺(dopamine,DA)神经元死亡引起。帕金森病发病过程中,路易小体病理(Lewy pathology,LP)和线粒体功能障碍最为突出,但SNc 多巴胺神经元为什么特别易遭受这两种病理损害尚不清楚。研究表明,与脑内其他神经元相比,SNc 多巴胺神经元具有特殊的解剖形态、生理和生化表型。SNc 多巴胺神经元具有高分支无髓鞘轴突和众多的突触终端,突触末梢物质和能量代谢的高要求需要大量的线粒体,巨大突触终端增加了突触蛋白质的表达、转运和降解的负担。SNc 多巴胺神经元具有独特的自主起搏电活动和缓慢钙振荡特性,Cav1-3钙通道活动及后续的级联反应增加了SNc 多巴胺神经元线粒体负担,增加了基础氧化应激、线粒体损伤和自噬,降低了处理错误折叠蛋白质的能力。SNc 多巴胺神经元特有的神经递质--多巴胺易被氧化成为反应性醌,具有潜在毒性,可破坏葡糖脑苷脂酶导致其活性降低,引起线粒体氧化应激和溶酶体功能障碍。总之,SNc 多巴胺神经元具有的这些内在因素综合起来,可能导致了其对线粒体功能障碍和路易小体病理损伤的易感性,并且SNc 多巴胺神经元所处的神经网络障碍也促使了帕金森病的进展。认识到这些特征会对研究帕金森病相关病理学机制和阻止疾病进展创造新的机会。  相似文献   

11.
6-Hydroxydopamine (6-OHDA) causes selective degeneration of dopaminergic neurons in the rat brain and has been used to produce an animal model of Parkinsonism. Recently, a clonal line of immortalized dopamine (DA) neurons (1RB3AN27), which expresses varying levels of tyrosine hydroxylase, dopamine transporter, neuron specific enolase, and nestin, was established. These DA neurons reduce behavioral deficits in 6-OHDA-lesioned rats. The relative sensitivity of fetal and adult neurons to potential neurotoxins is not well defined. The availability of immortalized DA neurons provides a unique opportunity to compare the relative neurotoxicity of 6-OHDA in differentiated and undifferentiated DA neurons in vitro and identify neuroprotective agents. Our results showed that 6-OHDA treatment for 24 hr decreased the viability of undifferentiated and differentiated immortalized DA neurons in vitro, as determined by the MTT assay, and increased the rate of apoptosis in differentiated DA neurons. The differentiated DA neurons (IC50 = 33 microM) were about 2-fold more sensitive to 6-OHDA than undifferentiated DA neurons (IC50 = 75 microM) in cell culture. Similarly, the differentiated DA neurons were more sensitive to another neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), which is commonly used to induce Parkinsonism in animal models, than were the undifferentiated DA neurons in culture. Among growth factors tested, only glial cell line-derived neurotrophic factor (GDNF) partially protected differentiated DA neurons against 6-OHDA-induced toxicity. These results suggest that undifferentiated and differentiated immortalized DA neurons can be a useful experimental model to study relative sensitivity to neurotoxins and neuroprotective agents that could have relevance to fetal and adult neurons.  相似文献   

12.
Effects of dopamine on the background spike activity of functionally (according to their electrophysiological characteristics) identified dopaminergic (DA) or non-dopaminergic (non-DA) neurons of the compact zone of thesubstantia nigra were studied on slices of the midbrain of adult rats. In the majority of DA neurons, dopamine suppressed the background activity in a dose-dependent manner. Sensitivity of these cells to dopamine varied within a wide range: IC50, the concentration providing the 50% maximum effect, equalled from 3 to 3,000 µM in different units. A part of DA neurons responded to dopamine with an increase in their activity. Mixed responses, in which an initial suppression of impulsation was replaced by a slow-developing activation, was observed in some neurons. Non-DA neurons usually responded to dopamine by an enhancement of impulsation; yet, the cells with inhibitory or mixed responses similar to those of DA neurons could be found in this population as well. Sensitivity of non-DA neurons to dopamine was about the same as that of DA-cells, without the dependence on the direction of responses. S(–)-suipiride, a blocker of D2 receptors, decreased the inhibitory component of all tested responses to dopamine both in DA and non-DA neurons and evoked no changes in the excitatory component. At the same time, R(+)-SCH 23390 HC1, a blocker of D1 receptors, suppressed the activatory component of responses with no effect on the inhibitory component. We conclude that both types of DA receptors, D2 and D1 receptors, can be present on the DA and non-DA neurons. Dopamine, influencing these receptors, suppresses or facilitates, respectively, the spike activity of these cells. The relative amount of such receptors is the main factor determining the pattern and dynamics of the integral response to dopamine application. The possible functional role of the presence of both D1 and D2 receptors on the membrane of a single neuron is discussed.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 268–277, July–August, 1995.  相似文献   

13.
The acute and long-term effects of the local perfusion of 3,4-methylenedioxymethamphetamine (MDMA) and the interaction with the mitochondrial inhibitor malonate (MAL) were examined in the rat striatum. MDMA, MAL or the combination of MAL with MDMA was reverse dialyzed into the striatum for 8 h via a microdialysis probe while extracellular dopamine (DA) and serotonin (5-HT) were measured. One week later, tissue immediately surrounding the probe was assayed for DA and 5-HT tissue content. Local perfusion of MDMA increased DA and 5-HT release but did not produce long-term depletion of DA or 5-HT in tissue. Malonate also increased both DA and 5-HT release but, in contrast to MDMA, produced only long-term depletion of DA. The combined perfusion of MDMA/MAL synergistically increased the release of DA and 5-HT and produced long-term depletion of both DA and 5-HT in tissue. These results support the conclusion that DA, compared with 5-HT, neurons are more susceptible to mitochondrial inhibition. Moreover, MDMA, which does not normally produce DA depletion in the rat, exacerbated MAL-induced DA depletions. The effect of MDMA in combination with MAL to produce 5-HT depletion suggests a role for bio-energetic stress in MDMA-induced toxicity to 5-HT neurons. Overall, these results highlight the importance of energy balance to the function of DA and 5-HT neurons and to the toxic effects of MDMA.  相似文献   

14.
Administration of gamma-butyrolactone (GBL), an anesthetic which reduces dopaminergic neuronal activity, decreased the concentration of the dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the intermediate lobe of the pituitary gland, and increased alpha-melanocyte stimulating hormone (alpha MSH) concentrations in the serum of male rats. Bilateral electrical stimulation of the rostral arcuate nucleus, which contains perikarya of tuberohypophysial DA neurons, increased DOPAC concentrations in the intermediate lobe and decreased alpha MSH concentrations in the serum of GBL-anesthetized rats. Administration of the DA antagonist haloperidol prevented the decline in serum alpha MSH levels following arcuate nucleus stimulation, but had no effect on serum alpha MSH concentrations in sham-stimulated GBL-treated rats. These results indicate that GBL-induced decreases or stimulation-induced increases in the activity of tuberohypophysial DA neurons are accompanied by corresponding changes in the metabolism of DA in the intermediate lobe of the rat pituitary gland, and by reciprocal changes in the secretion of alpha MSH.  相似文献   

15.
The in vitro development of monoamine oxidase (MAO) activity and [3H]dopamine (DA) uptake capacity of dissociated cell cultures from rat embryo mesencephalon were correlated with the potency of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) neurotoxicity. Specific activities of both MAO-A and MAO-B increased during in vitro development of the cultures, with MAO-B activity increasing 20-fold between the first and fourth week. Similarly, [3H]DA accumulation increased 2.6-fold between the first and third week in vitro, when it reached a plateau. Unexpectedly, the toxicities of MPTP and MPP+ were substantially decreased in the older cultures. Exposure to MPTP reduced [3H]DA accumulation per culture by 77% in 1-week-old cultures and by 36% in 4-week-old cultures. Similarly, damage caused by MPPT was reduced from 84% of control in the first week to 34% of control in the fourth week. The attenuation of neurotoxicity was not due to an increase in storage of MPP+ in the synaptic vesicles of DA neurons, nor to a change in the distribution of MPP+ between dopaminergic and other cellular components of the cultures. The damage to DA neurons caused by the mitochondrial toxin, rotenone, also showed a similar reduction in the older cultures. These observations coupled with an increase in lactate formation and glucose consumption during the in vitro development of the cultures suggest a shift toward increased glycolysis and decreased dependence on aerobic metabolism. This would render the cells more resistant to the inhibition of mitochondrial function by MPP+.  相似文献   

16.
The effect of the kappa opioid receptor antagonist nor-binaltorphimine (NOR-BNI) was examined on the activity of dopamine (DA) neurons comprising the nigrostriatal, mesolimbic, and tuberohypophysial systems in the male rat. DA neuronal activity was estimated by measuring: (1) the concentration of the DA metabolite 3,4-dihydroxyphenylacetic acid and, (2) the accumulation of 3,4-dihydroxyphenylalanine after administration of a decarboxylase inhibitor in brain (striatum, nucleus accumbens) and pituitary regions (intermediate lobe, neural lobe) containing terminals of these neurons. The intracerebroventricular administration of NOR-BNI produced a dose- and time-related increase in the activity of tuberohypophysial DA neurons, but failed to alter the activity of nigrostriatal or mesolimbic DA neurons. The ability of NOR-BNI to enhance the activity of tuberohypophysial DA neurons was blocked by the kappa opioid agonist U-50,488. These results indicate that NOR-BNI, acting on kappa opioid receptors, activates tuberohypophysial DA neurons projecting to the neural and intermediate lobes of the pituitary.  相似文献   

17.
Abstract: Our previous studies indicate that, in certain non-catecholamine (CA) neurons, expression of the gene for the CA biosynthetic enzyme tyrosine hydroxylase (TH) can be initiated by the obligatory interaction of acidic fibroblast growth factor (aFGF) and a CA activator. In this study, we sought to determine whether these same differentiation factors also play a role in regulating existing TH expression in CA neurons. Thus, the effects of exogenous aFGF and CAs on TH were studied in developing or toxin-damaged dopamine (DA) neurons from the embryonic day 15 rat ventral midbrain, where it was likely to be at physiologically low levels. Cultures were incubated with various concentrations of aFGF, DA, or aFGF and DA. Some cultures were first damaged with 2.5 µ M 1-methyl-4-phenylpyridinium. In developing DA neurons, an 80% increase in TH activity was found only after cotreatment with aFGF (100 ng/ml) and DA (1 µ M ) or other monoamines. Likewise, in damaged DA neurons, aFGF and DA reversed the 50% loss in TH activity caused by toxin. This was observed within 4 h of treatment and was not associated with changes in the number or appearance of DA neurons, suggesting a biochemical rather than a trophic effect. Pretreatment with protein or RNA synthesis inhibitors eliminated the increase. In PC12 cells, where TH is highly expressed, activity was unaltered by treatment. We conclude that the aFGF and CAs may be involved in not only the initiation but also the regulation of TH.  相似文献   

18.
In vivo electrochemical techniques were used to study the effects of the sulfated (CCK8-S) and unsulfated (CCK8-US) forms of cholecystokinin octapeptide on apomorphine-induced inhibition of dopamine (DA) release in the nucleus accumbens of the anesthetized rat. A dose-dependent inhibition of DA release was observed with intravenous (i.v.) injections of apomorphine. CCK8-S administered i.v. at the nadir of the apomorphine-induced inhibition of DA release produced a transient and dose-dependent increase followed by a prolonged decrease in DA release CCK8-US was ineffective in altering apomorphine's inhibitory effects on DA release. The CCK receptor antagonist proglumide injected i.v. 10 min after apomorphine administration had no effect on apomorphine-induced inhibition of DA release, but blocked the effects of CCK8-S on this inhibition. Given that apomorphine may inhibit DA release by a direct hyperpolarizing action on DA neurons, the observation that CCK8-S temporarily reverses apomorphine-induced effects and further inhibits DA release suggests that CCK8-S exerts its inhibitory effects via a process of depolarization block in DA neurons. These findings indicate that apomorphine and CCK8-S may inhibit DA release in vivo by opposite effects on DA cell membrane potentials and suggest that endogenously released CCK may serve to modulate mesolimbic DA neurotransmission.  相似文献   

19.
Loss-of-function mutations in the gene encoding the multifunctional protein, DJ-1, have been implicated in the pathogenesis of early-onset familial Parkinson's disease (PD), suggesting that DJ-1 may act as a neuroprotectant for dopaminergic (DA) neurons. Enhanced autophagy may benefit PD by clearing damaged organelles and protein aggregates; thus, we determined if DJ-1 protects DA neurons against mitochondrial dysfunction and oxidative stress through an autophagic pathway. Cultured DA cells (MN9D) overexpressing DJ-1 were treated with the mitochondrial complex I inhibitor, rotenone. In addition, rotenone was injected into the left substantia nigra of rats 4 weeks after injection with a DJ-1 expression vector. Overexpression of DJ-1 protected MN9D cells against apoptosis, significantly enhanced the survival of nigral DA neurons after rotenone treatment in vivo, and rescued rat behavioral abnormalities. Overexpression of DJ-1 enhanced rotenone-evoked expression of the autophagic markers, beclin-1 and LC3II, while transmission electron microscopy and confocal imaging revealed that the ultrastructural signs of autophagy were increased by DJ-1. The neuroprotective effects of DJ-1 were blocked by phosphoinositol 3‐kinase and the autophagy inhibitor, 3-methyladenine, and by the ERK pathway inhibitor, U0126. Confocal imaging revealed that the size of p62-positive puncta decreased significantly in DJ-1 overexpression of MN9D cells 12 h after rotenone treatment, suggesting that DJ-1 reveals the ability to clear aggregated p62 associated with PD. Factors that control autophagy, including DJ-1, may inhibit rotenone-induced apoptosis and present novel targets for therapeutic intervention in PD.  相似文献   

20.
Li HT  Lin DH  Luo XY  Zhang F  Ji LN  Du HN  Song GQ  Hu J  Zhou JW  Hu HY 《The FEBS journal》2005,272(14):3661-3672
Fibrillization of alpha-synuclein (alpha-Syn) is closely associated with the formation of Lewy bodies in neurons and dopamine (DA) is a potent inhibitor for the process, which is implicated in the causative pathogenesis of Parkinson's disease (PD). To elucidate any molecular mechanism that may have biological relevance, we tested the inhibitory abilities of DA and several analogs including chemically synthetic and natural polyphenols in vitro. The MS and NMR characterizations strongly demonstrate that DA and its analogs inhibit alpha-Syn fibrillization by a mechanism where the oxidation products (quinones) of DA analogs react with the amino groups of alpha-Syn chain, generating alpha-Syn-quinone adducts. It is likely that the amino groups of alpha-Syn undergo nucleophilic attack on the quinone moiety of DA analogs to form imino bonds. The covalently cross-linked alpha-Syn adducts by DA are primarily large molecular mass oligomers, while those by catechol and p-benzoquinone (or hydroquinone) are largely monomers or dimers. The DA quinoprotein retains the same cytotoxicity as the intact alpha-Syn, suggesting that the oligomeric intermediates are the major elements that are toxic to the neuronal cells. This finding implies that the reaction of alpha-Syn with DA is relevant to the selective dopaminergic loss in PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号