首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine.  相似文献   

2.
Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets.  相似文献   

3.
Numerous studies have suggested relationships between myeloperoxidase (MPO), inflammation, and atherosclerosis. MPO-derived reactive chlorinating species attack membrane plasmalogens releasing alpha-chloro fatty aldehydes including 2-chlorohexadecanal (2-ClHDA), which have been found to accumulate in activated neutrophils, activated monocytes, infarcted myocardium and human atheromas. The present study employed synthetically prepared 2-Cl-[3H]-HDA as well as stable isotope-labeled 2-ClHDA to elucidate the metabolism of 2-ClHDA. The results herein demonstrate that human coronary artery endothelial cells oxidize and reduce 2-ClHDA to its respective chlorinated fatty acid (alpha-ClFA) and chlorinated fatty alcohol (alpha-ClFOH). Within the first hour of incubations of human coronary artery endothelial cells with 2-Cl-[3H]-HDA, the label was incorporated into the alpha-ClFOH and alpha-ClFA pools. After 1 h, the radiolabel was predominantly found in the alpha-ClFOH pool. Cell-derived alpha-ClFOH and alpha-ClFA were also released into the cell culture medium. Additionally, chlorinated fatty acid was incorporated into complex endothelial cell glycerolipids, including monoglycerides, triglycerides, phosphatidylcholine, and phosphatidylethanolamine. The oxidation and reduction of 2-ClHDA to alpha-ClFA and alpha-ClFOH, respectively, was further supported by mass spectrometric analyses of human coronary artery endothelial cells incubated with either 2-ClHDA or stable isotope-labeled 2-ClHDA (2-Cl-[d4]-HDA). 2-ClHDA was also oxidized to alpha-ClFA and reduced to alpha-ClFOH in both control and phorbol 12-myristate 13-acetate-stimulated neutrophils. Taken together, these results show that a family of chlorinated lipidic metabolites is produced from alpha-chloro fatty aldehydes derived from reactive chlorinating species targeting of plasmalogens. These metabolites are incorporated into complex lipids and their biological roles may provide new insights into MPO-mediated disease.  相似文献   

4.
Leukocytes are key cellular mediators of human diseases through their role in inflammation. Identifying unique molecules produced by leukocytes may provide new biomarkers and mechanistic insights into the role of leukocytes in disease. Chlorinated lipids are generated as a result of myeloperoxidase-containing leukocyte-derived hypochlorous acid targeting the vinyl ether bond of plasmalogens. The initial product of this reaction is α-chlorofatty aldehyde. α-Chlorofatty aldehyde is both oxidized to α-chlorofatty acid and reduced to α-chlorofatty alcohol by cellular metabolism. This review focuses on the separation techniques and quantitative analysis for these chlorinated lipids. For α-chlorofatty acid, the negative charge of carboxylic acids is exploited to detect the chlorinated lipid species of these acids by electrospray ionization mass spectrometry in the negative ion mode. In contrast, α-chlorofatty aldehyde and α-chlorofatty alcohol are converted to pentafluorobenzyl oxime and pentafluorobenzoyl ester derivatives, which are detected by negative ion chemical ionization mass spectrometry. These two detection methods coupled with the use of stable isotope internal standards and either liquid chromatography or gas chromatography provide highly sensitive analytical approaches to measure these novel lipids.  相似文献   

5.
α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice.  相似文献   

6.
Fatty aldehydes are important components of the cellular lipidome. Significant interest has been developed towards the analysis of the short chain α,β-unsaturated and hydroxylated aldehydes formed as a result of oxidation of polyunsaturated fatty acids. Multiple gas chromatography-mass spectrometry (GC/MS) and subsequently liquid chromatography-mass spectrometry (LC/MS) approaches have been developed to identify and quantify short-chain as well as long-chain fatty aldehydes. Due to the ability to non-enzymaticaly form Schiff bases with amino groups of proteins, lipids, and with DNA guanidine, free aldehydes are viewed as a marker or metric of fatty acid oxidation and not the part of intracellular signaling pathways which has significantly limited the overall attention this group of molecules have received. This review provides an overview of current GC/MS and LC/MS approaches of fatty aldehyde analysis as well as discusses technical challenges standing in the way of free fatty aldehyde quantitation.  相似文献   

7.
Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosclerosis. MPO-derived reactive chlorinating species (RCS) attack membrane plasmalogens releasing alpha-chloro-fatty aldehydes (alpha-Cl-FALDs) including 2-chlorohexadecanal (2-ClHDA). The molecular targets of alpha-Cl-FALDs are not known. The current study demonstrates 2-ClHDA adducts with ethanolamine glycerophospholipids and Fmoc-lysine. Utilizing electrospray ionization mass spectrometry, chlorinated adducts were observed that are apparent Schiff base adducts. Reduction of these Schiff base adducts with sodium cyanoborohydride resulted in a novel, stable adduct produced by the elimination of HCl. NMR further confirmed this structure. 2-ClHDA adducts with ethanolamine glycerophospholipids were also substrates for phospholipase D (PLD). The hydrolysis products were derivatized to pentafluorobenzoyl esters, and further structurally confirmed by GC-MS. Multiple molecular species of 2-ClHDA-N-modified ethanolamine glycerophospholipids were observed in endothelial cells treated with 2-ClHDA. These results show novel Schiff base adducts of alpha-Cl-FALDs with primary amines, which may represent an important fate of alpha-Cl-FALDs.  相似文献   

8.
C. Gómez  O.J. Pozo  L. Garrostas  J. Segura  R. Ventura 《Steroids》2013,78(12-13):1245-1253
Metandienone is one of the most frequently detected anabolic androgenic steroids in sports drug testing. Metandienone misuse is commonly detected by monitoring different metabolites excreted free or conjugated with glucuronic acid using gas chromatography mass spectrometry (GC–MS) and liquid chromatography tandem mass spectrometry (LC–MS/MS) after hydrolysis with β-glucuronidase and liquid–liquid extraction. It is known that several metabolites are the result of the formation of sulphate conjugates in C17, which are converted to their 17-epimers in urine. Therefore, sulphation is an important phase II metabolic pathway of metandienone that has not been comprehensively studied. The aim of this work was to evaluate the sulphate fraction of metandienone metabolism by LC–MS/MS. Seven sulphate metabolites were detected after the analysis of excretion study samples by applying different neutral loss scan, precursor ion scan and SRM methods. One of the metabolites (M1) was identified and characterised by GC–MS/MS and LC–MS/MS as 18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one sulphate. M1 could be detected up to 26 days after the administration of a single dose of metandienone (5 mg), thus improving the period in which the misuse can be reported with respect to the last long-term metandienone metabolite described (18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one excreted in the glucuronide fraction).  相似文献   

9.
Quantification of fatty acids has been crucial to elucidate lipid biosynthesis pathways in plants. To date, fatty acid identification and quantification has relied mainly on gas chromatography (GC) coupled to flame ionization detection (FID) or mass spectrometry (MS), which requires the derivatization of samples and the use of chemical standards for annotation. Here we present an alternative method based on a simple procedure for the hydrolysis of lipids, so that fatty acids can be quantified by liquid chromatography mass spectrometry (LC‐MS) analysis. Proper peak annotation of the fatty acids in the LC‐MS‐based methods has been achieved by LC‐MS measurements of authentic standard compounds and elemental formula annotation supported by 13C isotope‐labeled Arabidopsis. As a proof of concept, we have compared the analysis by LC‐MS and GC‐FID of two previously characterized Arabidopsis thaliana knock‐out mutants for FAD6 and FAD7 desaturase genes. These results are discussed in light of lipidomic profiles obtained from the same samples. In addition, we performed untargeted LC‐MS analysis to determine the fatty acid content of two diatom species. Our results indicate that both LC‐MS and GC‐FID analyses are comparable, but that because of higher sensitivity and selectivity the LC‐MS‐based method allows for a broader coverage and determination of novel fatty acids.  相似文献   

10.
Uric acid is an important diagnostic marker of catabolism of the purine nucleosides, and accurate measurements of serum uric acid are necessary for proper diagnosis of gout or renal disease appearance. A candidate reference method involving isotope dilution coupled with liquid chromatography/mass spectrometry (LC/MS) has been described. An isotopically labeled internal standard, [1,3-(15)N(2)] uric acid, was added to serum, followed by equilibration and protein removal clean up to prepare samples for liquid chromatography/mass spectrometry electrospray ionization (LC/MS-ESI) analyses. (M-H)(-) ions at m/z 167 and 169 for uric acid and its labeled internal standard were monitored for LC/MS. The accuracy of the measurement was evaluated by a comparison of results of this candidate reference method on lyophilized human serum reference materials for uric acid (Standard Reference Materials SRM909b) with the certified values determined by gas chromatography/mass spectrometry reference methods and by a recovery study for the added uric acid. The method performed well against the established reference method of ion-exchange followed by derivatization isotope dilution (ID) gas chromatography mass spectrometry (ID-GC/MS). The results of this method for uric acid agreed well with the certified values and were within 0.10%. The amounts of uric acid recovered and added were in good agreement for the three concentrations. This method was applied to determine uric acid in samples of frozen serum pools. Excellent precision was obtained with within-set CVs of 0.08-0.18% and between-set CVs of 0.02-0.07% for LC/MS analyses. Liquid chromatography/tandem mass spectrometry electrospray ionization (LC/MS/MS-ESI) analysis was also performed. The LC/MS and LC/MS/MS results were in very good agreement (within 0.14%). This LC/MS method, which demonstrates good accuracy and precision, and is in the speed of analysis without the need for a derivatization stage, qualifies as a candidate reference method. This method can be used as an alternative reference method to provide an accuracy base to which the routine methods can be compared.  相似文献   

11.
A rapid and systematic strategy based on liquid chromatography–mass spectrometry (LC–MS) profiling and liquid chromatography–tandem mass spectrometry (LC–MS–MS) substructural techniques was utilized to elucidate the degradation products of paclitaxel, the active ingredient in Taxol. This strategy integrates, in a single instrumental approach, analytical HPLC, UV detection, full-scan electrospray MS, and MS–MS to rapidly and accurately elucidate structures of impurities and degradants. In these studies, degradants induced by acid, base, peroxide, and light were profiled using LC–MS and LC–MS–MS methodologies resulting in an LC–MS degradant database which includes information on molecular structures, chromatographic behavior, molecular mass, and MS–MS substructural information. The stressing conditions which may cause drug degradation are utilized to validate the analytical monitoring methods and serve as predictive tools for future formulation and packaging studies. Degradation products formed upon exposure to basic conditions included baccatin III, paclitaxel sidechain methyl ester, 10-deacetylpaclitaxel, and 7-epipaclitaxel. Degradation products formed upon exposure to acidic conditions included 10-deacetylpaclitaxel and the oxetane ring opened product. Treatment with hydrogen peroxide produced only 10-deacetylpaclitaxel. Exposure to high intensity light produced a number of degradants. The most abundant photodegradant of paclitaxel corresponded to an isomer which contains a C3–C11 bridge. These methodologies are applicable at any stage of the drug product cycle from discovery through development. This library of paclitaxel degradants provides a foundation for future development work regarding product monitoring, as well as use as a diagnostic tool for new degradation products.  相似文献   

12.
The quantitative analysis of amino acids (AAs) in single dry blood spot (DBS) samples is an important issue for metabolic diseases as a second-tier test in newborn screening. An analytical method for quantifying underivatized AAs in DBS was developed by using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The sample preparation in this method is simple and ion-pairing agent is not used in the mobile phase that could avoid ion suppression, which happens in mass spectrometry and avoids damage to the column. Through chromatographic separation, some isomeric compounds could be identified and quantified, which cannot be solved through only appropriate multiple reactions monitoring transitions by MS/MS. The concentrations of the different AAs were determined using non-deuterated internal standard. All calibration curves showed excellent linearity within test ranges. For most of the amino acids the accuracy of extraction recovery was between 85.3 and 115 %, and the precision of relative standard deviation was <7.0 %. The 35 AAs could be identified in DBS specimens by the developed LC–MS/MS method in 17–19 min, and eventually 24 AAs in DBS were quantified. The results of the present study prove that this method as a second-tier test in newborn screening for metabolic diseases could be performed by the quantification of free AAs in DBS using the LC–MS/MS method. The assay has advantages of high sensitive, specific, and inexpensive merits because non-deuterated internal standard and acetic acid instead of ion-pairing agent in mobile phase are used in this protocol.  相似文献   

13.
We applied the metabolomic analysis of comprehensive small-molecular metabolites using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) and principal component analysis to identify uremic toxins accumulated in the serum of chronic renal failure (CRF) rats. CRF rats were produced by 5/6-nephrectomy. Indoxyl sulfate was demonstrated to be the first principal serum metabolite which differentiates CRF from normal, followed by phenyl sulfate, hippuric acid and p-cresyl sulfate. Then, we measured the serum levels of indoxyl sulfate, phenyl sulfate, hippuric acid and p-cresyl sulfate by the selected reaction monitoring (SRM) of LC/ESI-MS/MS, and demonstrated that these serum levels were markedly increased in CRF rats as compared with normal rats. As creatinine clearance decreased, the serum levels of the metabolites increased.  相似文献   

14.
Fatty acid (FA) composition of vacuolar membrane lipids from storage tissues of umbelliferous plants, viz., parsnip (Pastinaca sativa L.), parsley (Petroselinium crispum L.), and carrot (Daucus carota L.) is studied by gas-liquid chromatography and the FA biosynthetic pathways are considered. Vacuolar membrane lipids are characterized by high (78% of the total FA pool) content of unsaturated FA among which linoleic acid is predominant. Its content in vacuolar lipids of parsnip, parsley and carrot is 53.5, 55.1, and 54.9%, respectively. Parsnip and parsley vacuolar lipids contain large amounts of hexadecadienoic C16:2ω6 acid (8.0 and 4.6%, respectively). The content of α-linolenic acid in vacuolar lipids of tested plants varies from 4.8 to 7.3%. Palmitic acid (18.0–20.7%) predominates among saturated FA. High content of linoleic and hexadecadienoic acid in parsnip and parsley vacuolar lipids is suggestive of a crucial role of the microsomal ω6 fatty-acid desaturase fad2 gene in resistance and acclimation of plants to low temperatures.  相似文献   

15.
The transport of α-methyl-l-glutamic acid was studied in Streptococcus faecalis. Energy-dependent uptake against substantial concentration gradients was observed. Kinetic experiments indicated that, in contrast to l-glutamic acid, only a single catalytic component (high affinity) and a diffusion controlled process participated in α-methyl-l-glutamic acid uptake. At concentrations up to 10 mM, α-methylglutamate transport was almost completely abolished in a mutant strain lacking a high affinity dicarboxylic amino acid transport system. In competition experiments, α-methylglutamic acid antagonized glutamate uptake via the high affinity system, and only slightly via the low affinity system. Column chromatography of cell extracts showed that very little (approx. 5%) of the accumulated amino acid was converted to metabolites during short term incubations. These studies indicate that, at concentrations up to 3–5 mM, α-methyl-l-glutamic acid can be used as a specific, relatively metabolically inert substrate of the high affinity dicarboxylic amino acid transport system in S. faecalis.  相似文献   

16.
The multilamellar wall secreted by protoplasts isolated from locule tissue of tomato (Lycopersicon esculentum L.) fruit was purified, and an extract was obtained after depolymerization with BF3-methanol. Analysis of this extract using thin layer chromatography demonstrated the presence of fatty acid methyl esters, fatty alcohols, dicarboxylic acid dimethyl esters, and ω-hydroxy acid methyl esters. These components were quantified using an Iatroscan thin layer chromatography-flame ionization detection system. The different chain lengths in each group were identified and quantified using gas chromatography. The results clearly indicated the presence of suberin.  相似文献   

17.
High-performance liquid chromatography with on-line electrospray ionization mass spectrometry (ESI-LC/MS) was investigated for the analysis of carbohydrate heterogeneity using RNase B as a model glycoprotein. Oligosaccharides released from RNase B with endoglycosidase H were reduced and separated on a graphitized carbon column (GCC). GCC-HPLC/MS in the positive-ion mode was successful in the identification of one Man5GlcNAc, three Man6GlcNAc, three Man7GlcNAc, three Man8GlcNAc, one Man9GlcNAc, and an oligosaccharide having six hexose units (Hex) and two N-acetylhexosamine units (HexNAc). The branch structures of the three Man7GlcNAc isomers were determined by liquid chromatography with tandem mass spectrometry (LC/MS/MS). LC/MS/MS analysis was shown to be useful for the detection and identification of a trace amount of Hex6HexNAc2 alditol as a hybrid-type oligosaccharide. Its structure was confirmed by the combination of LC/MS with enzymatic digestion using beta-galactosidase and N-acetyl-beta-glucosaminidase. The relative quantities of high-mannose-type oligosaccharides in RNase B detected by ESI-LC/MS are in reasonable agreement with those by UV, high-pH anion-exchange chromatography with pulsed amperometric detection, fluorophore-assisted carbohydrate electrophoresis. Our results indicate that LC/MS and LC/MS/MS can be utilized to elucidate the distribution of oligosaccharides and their structures, which differ in molecular weight, sugar sequence, and branch structure.  相似文献   

18.
《Free radical research》2013,47(7):881-887
Abstract

Lipid peroxidation is responsible for the generation of chemically reactive, diffusible lipid-derived electrophiles (LDEs) that covalently modify cellular protein targets. These protein modifications modulate protein activity and macromolecular interactions and induce adaptive and toxic cell signaling. Protein modifications induced by LDEs can be identified and quantified by affinity enrichment and liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based techniques. Tagged LDE analog probes with different electrophilic groups can be covalently captured by click chemistry for LC–MS/MS analyses, thereby enabling in-depth studies of proteome damage at the protein and peptide sequence levels. Conversely, click-reactive, thiol-directed probes can be used to evaluate thiol damage caused by LDE by difference. These analytical approaches permit systematic study of the dynamics of protein damage caused by LDE and mechanisms by which oxidative stress contribute to toxicity and diseases.  相似文献   

19.
Seventy-four urine specimens previously found to contain lysergic acid diethylamide (LSD) by gas chromatography–mass spectrometry (GC–MS) were analyzed by a new procedure for the LSD metabolite 2-oxo-3-hydroxy-LSD (O-H-LSD) using a Finnigan LC–MS–MS system. This procedure proved to be less complex, shorter to perform and provides cleaner chromatographic characteristics than the method currently utilized by the Navy Drug Screening Laboratories for the extraction of LSD from urine by GC–MS. All of the specimens used in the study screened positive for LSD by radioimmunoassay (Roche Abuscreen®). Analysis by GC–MS revealed detectable amounts of LSD in all of the specimens. In addition, isolysergic diethylamide (iso-LSD), a byproduct of LSD synthesis, was quantitated in 64 of the specimens. Utilizing the new LC–MS–MS method, low levels of N-desmethyl-LSD (nor-LSD), another identified LSD metabolite, were detected in some of the specimens. However, all 74 specimens contained O-H-LSD at significantly higher concentrations than LSD, iso-LSD, or nor-LSD alone. The O-H-LSD concentration ranged from 732 to 112 831 pg/ml (mean, 16 340 pg/ml) by quantification with an internal standard. The ratio of O-H-LSD to LSD ranged from 1.1 to 778.1 (mean, 42.9). The presence of O-H-LSD at substantially higher concentrations than LSD suggests that the analysis for O-H-LSD as the target analyte by employing LC–MS–MS will provide a much longer window of detection for the use of LSD than the analysis of the parent compound, LSD.  相似文献   

20.
An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6–10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6–C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6–C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6–C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号