首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biological remediation of olive oil mill wastes has been attempted several times in the past through the use of different types of microbes. Among them, a relatively large array of fungi were studied for neutralizing the heavy pollutant effects and/or for converting these wastes into new value-added products. The present investigation was aiming at examining whether olive oil mill wastes could be exploited for the cultivation of mushrooms of the genus Pleurotus. At a preliminary stage, two Pleurotus species, i.e. P. eryngii and P. pulmonarius, were tested for their ability to colonize an olive press-cake (OPC) substrate supplemented with various dilutions of raw olive mill wastewater (OWW). Some important cultural characters related to mushroom production (earliness, yield, biological efficiencies and quality of basidiomata) were estimated. The outcome revealed different cultural responses for each Pleurotus species examined; the P. pulmonarius strain showed better earliness values and P. eryngii, although it was a slow growing fungus, produced basidiomata in high yields and of a very good quality. On the other hand, the OPC substrate supplemented with low concentrations of OWW (12.5% v/w) behaved satisfactorily as regards the fungal colonization rates and mushroom yield, but when the addition of higher rates of raw, untreated OWW (75–100% v/w) was attempted then the Pleurotus strains were completely unable to grow. The optimal concentration of OWW for Pleurotus mycelial growth was assessed through measurements of the biomass produced in liquid nutrient media and was found to lie within the 25–50% range, depending on the Pleurotus species and on the properties of the substrates examined. Furthermore, the phytotoxic effects that the spent liquid medium possessed were examined in comparison with the phytotoxicity of the raw liquid waste. The prospects of exploiting olive oil mills wastes for mushroom cultivation is discussed.  相似文献   

2.
The microbiological and physicochemical characterization of samples from the different wastewaters generated during oil extraction in a continuous olive mill was performed. The main aim was to determine which of the physicochemical parameters were the best fitted to correctly characterize these residual waters. High correlations were obtained for COD, DOC, K, P and N contents with the sampling points, allowing the distinction of olive washing waters (OWW) from olive centrifuge waters (OCW) and olive mill wastewaters (OMW). These parameters were sufficient for a rapid and less costly chemical characterization of these waters. Phenols and oil and grease contents, together with low pH and dissolved oxygen contents, and high organic loads, were the most toxic for microbial populations. Microbial characterization showed that fungi were well adapted to these stressing environmental characteristics and the reuse of OMW after aerobic treatment with microbial species isolated from the effluent is considered.  相似文献   

3.
The present work aims to use a biofilter technology (aerated submerged filters) for the aerobic transformation at laboratory-scale of olive washing water (OWW) generated in the first steps of olive oil processing, as well as the genetic profiling and identification to the species level of the bacteria involved in the formation of the biofilm, by means of TGGE. Chemical parameters, such as biological oxygen demand at five days (BOD5) and chemical oxygen demand (COD), decreased markedly (up to 90 and 85%, respectively) by the biological treatment, and the efficiency of the process was significantly affected by aeration and inlet flow rates. The total polyphenol content of inlet OWW was only moderately reduced (around 50% decrease of the inlet content) after the biofilter treatment, under the conditions tested. Partial 16S rRNA genes were amplified using total DNA extracted from the biofilm and separated by TGGE. Sequences of isolated bands were mostly affiliated to the alpha-subclass of Proteobacteria, and often branched in the periphery of bacterial genera commonly present in soil (Rhizobium, Reichenowia, Agrobacterium, and Sphingomonas). The data obtained by the experimentation at laboratory scale provided results that support the suitability of the submerged filter technology for the treatment of olive washing waters with the purpose of its reutilization.  相似文献   

4.
The fuel oxygenate methyl tert-butyl ether (MTBE), a widely distributed groundwater contaminant, shows potential for treatment by in situ bioremediation. The bacterial strain PM1 rapidly mineralizes and grows on MTBE in laboratory cultures and can degrade the contaminant when inoculated into groundwater or soil microcosms. We applied the TaqMan quantitative PCR method to detect and quantify strain PM1 in laboratory and field samples. Specific primers and probes were designed for the 16S ribosomal DNA region, and specificity of the primers was confirmed with DNA from 15 related bacterial strains. A linear relationship was measured between the threshold fluorescence (CT) value and the quantity of PM1 DNA or PM1 cell density. The detection limit for PM1 TaqMan assay was 2 PM1 cells/ml in pure culture or 180 PM1 cells/ml in a mixture of PM1 with Escherichia coli cells. We could measure PM1 densities in solution culture, groundwater, and sediment samples spiked with PM1 as well as in groundwater collected from an MTBE bioaugmentation field study. In a microcosm biodegradation study, increases in the population density of PM1 corresponded to the rate of removal of MTBE.  相似文献   

5.
In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.  相似文献   

6.
The industrial production of olive oil is accompanied by the accumulation of large quantities of by-products from the olive milling industry that are commonly dispersed as fertilisers, which are nowadays suspected to have potential toxic effects on is omicroflora. The aim of this work has been the investigation of the genetic diversity of bacterial communities present in soil treated with olive husks focusing on the dinitrogen-fixing bacteria.nifH genes were amplified from total soil DNA using universal primers, cloned and typed by restriction analysis and sequencing of representative haplotypes. On the same samples, DGGE analysis on amplified 16S rDNA was performed aiming at monitoring modifications in the total community pattern. Results showed a high genetic diversity ofnifH genes within the community, which was well in agreement with the total community profiles obtained by DGGE on 16SrDNA. Most of thenifH gene fragments (19 out of 32) were found to be similar to sequences related with clostridia.  相似文献   

7.
Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2 ? entering the reactor from an upstream trickling filter. Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2 ? production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct “Nitrosomonas-like” lineage dominated in activated sludge. Prior time series indicated that this “Nitrosomonas-like” lineage was dominant when NO2 ? levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2 ? levels were high. This is consistent with the hypothesis that NO2 ? production may cooccur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.  相似文献   

8.
Dry olive residue (DOR) transformation by wood decomposing basidiomycetes (e.g. Coriolopsis floccosa) is a possible strategy for eliminating the liabilities related to the use of olive oil industry waste as an organic soil amendment. The effects of organic fertilization with DOR on the culturable soil microbiota are largely unknown. Therefore, the objectives of this study were to measure the short-term effects of DOR and C. floccosa-transformed DOR on the culturable bacterial soil community, while at the same time documenting the bacterial diversity of an agronomic soil in the southeastern Iberian Peninsula. The control soil was compared with the same soil treated with DOR and with C. floccosa-transformed DOR for 0, 30 and 60 days. Impact was measured from total viable cells and CFU counts, as well as the isolation and characterization of 900 strains by fatty acid methyl ester profiles and 16S rRNA partial sequencing. The bacterial diversity was distributed between Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Bacilli, Sphingobacteria and Cytophagia. Analysis of the treatments and controls demonstrated that soil amendment with untransformed DOR produced important changes in bacterial density and diversity. However, when C. floccosa-transformed DOR was applied, bacterial proliferation was observed but bacterial diversity was less affected, and the distribution of microorganisms was more similar to the unamended soil.  相似文献   

9.
The long-term (18 years) effects of re-vegetating eroded soil on soil microbial biomass, community structure and diversity were investigated in a forest soil derived from Quaternary clay in the Red Soil Ecological Experimental Station of the Chinese Academy of Sciences. Large areas of land in this region of China have been subjected to severe soil erosion, characterised by the removal of the fertile surface soil and even the exposure of parental rock in some areas due to a combination of deforestation and heavy rainfall. The effects of planting eroded or uneroded soil with Pinus massoniana, Cinnamomum camphora or Lespedeza bicolor on the soil microbial community and chemical properties were assessed. Total soil microbial community DNA was extracted and bacterial 16 S rRNA gene fragments were amplified by PCR and analysed by terminal restriction fragment length polymorphism (T-RFLP). Microbial biomass carbon (Cmic) was measured by chloroform fumigation-extraction. Following the restoration there were significant increases in both Cmic and bacterial diversity (Shannon index), and significant changes in bacterial community structure. Erosion factors were significant only in minor dimensions suggesting that the restoration had been largely successful in terms of bacterial community structure. Compared with uneroded soil, Cmic recovered in L. bicolor and P. massoniana restored eroded plots and was significantly greater under these tree species than C. camphora, although soils in C. camphora restored plots displayed the highest bacterial diversity. The recovery of microbial biomass and diversity in the eroded plots was, to large extent, accompanied by the development of the same bacterial community structure as in the uneroded plots with erosion having relatively little effect on bacterial community structure.  相似文献   

10.
To understand the relationship between elevation and bacterial communities in wastewater treatment plants (WWTPs), bacterial communities in 21 municipal WWTPs across China, located 9 to 3,660 m above sea level (masl), were investigated by 454 pyrosequencing. A threshold for the association of elevation with bacterial community richness and evenness was observed at approximately 1,200 masl. At lower elevations, both richness and evenness were not significantly associated with elevation. At higher elevations, significant declines with increased elevations were observed for community richness and evenness. The declining evenness trend at the phylum level was reflected by distinct trends in relative abundance for individual bacterial phyla. Betaproteobacteria, Bacteroidetes, and Firmicutes displayed significant increases, while most other phyla showed declines. Spearman correlation analysis indicated that the community richness and evenness at high elevations were more correlated with elevation than with any other single environmental variable. Redundancy analysis indicated that the contribution of elevation to community composition variances increased from 3% at lower elevations to 11% at higher elevations whereas the community composition variance at higher elevations remained much more explained by operational variables (39.2%) than by elevation. The influent total phosphorus concentration, food/microorganism ratio, and treatment process were the three shared dominant contributors to the community composition variance across the whole elevation gradient, followed by effluent ammonia nitrogen and temperature at higher elevations.  相似文献   

11.
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.  相似文献   

12.
《Process Biochemistry》2004,39(11):1693-1699
Eight fungal and three bacterial isolates collected from decomposed wood, sediment core and effluent of pulp and paper mill were evaluated for their ability to decolourize kraft pulp bleached effluents. Decolourization potency of Paecilomyces sp. (F3) was maximal (67%) on day 1 followed by F5 (Phoma sp.) and F7 (Paecilomyces varioti). Among the various carbon sources used, Paecilomyces sp. (F3) reduced more than 80% colour and lignin in the presence of minimal salt medium and dextrose (0.2%, w/v), and there was an increase in biomass from 8.1 mg/ml initially to 12.8 mg/ml during that period. In the batch reactor one of the three bacteria, Pseudomonas aeruginosa, removed 48% colour from the effluent after 1 day followed by Acinetobacter calcoaceticus (39%) and Klebsiella pneumoniae (25%). In a two stage sequential bioreactor strain F3 was able to reduce 68% colour and P. aeruginosa 34% in 1 day. However, when fungal treated effluent was subsequently treated by P. aeruginosa 82% colour was reduced. The reduction of adsorbable organic halogens (AOX) in effluent was determined by F3 strain, however, bacterial strain PCP2 increased the content initially on day 1, which was readily degraded after 3 days by both fungus and bacterium in the sequential bioreactor.  相似文献   

13.
Little is known about the seasonal dynamics of biotic contaminants in swine confinement buildings (SCBs). The biotic contaminants of seven SCBs were monitored during one visit in the winter and one during the summer. Paired-end Illumina sequencing of the 16S rRNA gene, V3 region, was used to examine seasonal shifts in bacterial community composition and diversity. The abundances of 16S rRNA genes and six tetracycline resistance genes (tetB, tetH, tetZ, tetO, tetQ, and tetW) were also quantified using real-time PCR. Bacterial abundances, community composition and diversity all showed strong seasonal patterns defined by winter peaks in abundance and diversity. Microclimatic variables of SCBs, particularly air speed, PM2.5 and total suspended particles (TSP) were found significantly correlated to abundances, community composition, and diversity of bacterial bioaerosols. Seasonal fluctuations were also observed for four tetracycline resistance genes, tetH, tetO, tetQ, and tetW. The frequency of occurrences of these resistance genes were significantly higher in samples collected during winter and was also significantly correlated with air speed, PM2.5 and TSP. Overall, our results indicate that biotic contaminants in SCBs exhibit seasonal trends, and these could be associated with the microclimatic variables of SCBs. The correlations established in the current study could be helpful in establishing better management strategies to minimize the potential health impacts on both livestock and humans working in this environment.  相似文献   

14.
The Danube River is the second longest river in Europe, and its bacterial community composition has never been studied before over its entire length. In this study, bacterial community composition was determined by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified portions of the bacterial 16S rRNA gene from a total of 98 stations on the Danube River (73 stations) and its major tributaries (25 stations), covering a distance of 2,581 km. Shifts in the bacterial community composition were related to changes in environmental conditions found by comparison with physicochemical parameters (e.g., temperature and concentration of nutrients) and the concentration of chlorophyll a (Chl a). In total, 43 distinct DGGE bands were detected. Sequencing of selected bands revealed that the phylotypes were associated with typical freshwater bacteria. Apparent bacterial richness in the Danube varied between 18 and 32 bands and correlated positively with the concentration of P-PO4 (r = 0.56) and negatively with Chl a (r = −0.52). An artificial neural network-based model explained 90% of the variation of apparent bacterial richness using the concentrations of N-NO2 and P-PO4 and the distance to the Black Sea as input parameters. Between the cities of Budapest and Belgrade, apparent bacterial richness was significantly lower than that of other regions of the river, and Chl a showed a pronounced peak. Generally, the bacterial community composition developed gradually; however, an abrupt and clear shift was detected in the section of the phytoplankton bloom. Large impoundments did not have a discernible effect on the bacterial community of the water column. In conclusion, the riverine bacterial community was largely influenced by intrinsic factors.  相似文献   

15.
The Middle East Dust storms have greatly affected the south and west parts of Iran during the last decade. The main purpose of this study was to examine and compare culturable airborne bacteria concentration in particulate matter (PM) during normal, semi-dust, and dust event days in different places and seasons in Ahvaz from November 2011 to May 2012. Sampling was performed every 6 days and on dust event days at different sampling stations. The overall mean concentrations of PM10, PM2.5, and PM1 for the entire study period were 598.92, 114.8, and 34.5 μg/m3, respectively. The PM concentrations during the dust event days were much higher than normal and semi-dust event days. The highest mean PM concentrations were observed in March 2011. The low PM2.5/PM10 ratios indicate that these PM are mostly originating from natural sources such as dust storms. The overall mean concentration of total bacteria during the study period was 620.6 CFU/m3. The greatest bacterial concentrations were observed during dust event days and at areas with high traffic and more human activities compared with normal days and greener areas. The percentage of gram-positive bacteria was significantly higher than that during the study period (89 vs 11 %). During this study, 26 genera of culturable bacteria were identified from all the sampling stations. The most dominant genera in all sampling stations were Streptomyces, Bacillus, Kocuria, Corynebacterium, and Paenibacillus. The results also showed that there were positive correlations between PM and bacterial concentrations during the study period (p < 0.05).  相似文献   

16.
A thorough outlook on the effect of palm oil mill effluent (POME) final discharge towards bacterial community dynamics in the receiving river is provided in this study by using a high-throughput MiSeq. The shift of bacterial composition could be used to determine the potential bacterial indicators to indicate contamination caused by POME. This study showed that the POME final discharge did not only alter the natural physicochemical properties of the river water but also caused the reduction of bacterial diversity in the receiving river. The Chromatiaceae and Alcaligenaceae which were not detected in the upstream but were detected in the downstream part of the river are proposed as the indicator bacteria to indicate the river water contamination caused by POME final discharge. The emergence of either one or both bacteria in the downstream part of the river were shown to be carried over by the effluent. Therefore, an accurate pollution monitoring approach using bacterial indicator is expected to complement the conventional POME pollution assessment method which is currently dependent on the physicochemical properties of the final discharge. This is the first study that reported on the potential indicator bacteria for the assessment of river water contamination caused by POME final discharge.  相似文献   

17.
Eight ruminally-fistulated wethers were used to examine the temporal effects of afternoon (PM; 1600h) v. morning (AM; 0800 h) allocation of fresh spring herbage from a perennial ryegrass (Lolium perenne L.)-based pasture on fermentation and microbial community dynamics. Herbage chemical composition was minimally affected by time of allocation, but daily mean ammonia concentrations were greater for the PM group. The 24-h pattern of ruminal fermentation (i.e. time of sampling relative to time of allocation), however, varied considerably for all fermentation variables (P⩽0.001). Most notably amongst ruminal fermentation characteristics, ammonia concentrations showed a substantial temporal variation; concentrations of ammonia were 1.7-, 2.0- and 2.2-fold greater in rumens of PM wethers at 4, 6 and 8h after allocation, respectively, compared with AM wethers. The relative abundances of archaeal and ciliate protozoal taxa were similar across allocation groups. In contrast, the relative abundances of members of the rumen bacterial community, like Prevotella 1 (P=0.04), Bacteroidales RF16 group (P=0.005) and Fibrobacter spp. (P=0.008) were greater for the AM group, whereas the relative abundance of Kandleria spp. was greater (P=0.04) for the PM group. Of these taxa, only Prevotella 1 (P=0.04) and Kandleria (P<0.001) showed a significant interaction between time of allocation and time of sampling relative to feed allocation. Relative abundances of Prevotella 1 were greater at 2h (P=0.05), 4h (P=0.003) and 6h (P=0.01) after AM allocation of new herbage, whereas relative abundances of Kandleria were greater at 2h (P=0.003) and 4h (P<0.001) after PM allocation. The early post-allocation rise in ammonia concentrations in PM rumens occurred simultaneously with sharp increases in the relative abundance of Kandleria spp. and with a decline in the relative abundance of Prevotella. All measures of fermentation and most microbial community composition data showed highly dynamic changes in concentrations and genus abundances, respectively, with substantial temporal changes occurring within the first 8h of allocating a new strip of herbage. The dynamic changes in the relative abundances of certain bacterial groups, in synchrony with a substantial diurnal variation in ammonia concentrations, has potential effects on the efficiency by which N is utilised by the grazing ruminant.  相似文献   

18.
Overproduction of livestock manures with unpleasant odors causes significant environmental problems. The microbial fermentation bed (MFB) system is considered an effective approach to recycling utilization of agricultural byproducts and pig manure (PM). To gain a better understanding of bacterial communities present during the degradation of PM in MFB, the PM bacterial community was evaluated at different fermentation stages using 16S rRNA high throughput sequencing technology. The heatmap plot clustered five samples into short-term fermentation stage of 0–10 days and long-term fermentation stage of 15–20 days. The most abundant OTUs at the phylum level were Firmicutes, Actinobacteria and Proteobacteria in the long-term fermentation stage of PM, whereas Firmicutes, Bacteroidetes, and Proteobacteria predominated in the short-term fermentation stage of PM. At the genus level, organic degradation strains, such as Corynebacterium, Bacillus, Virgibacillus, Pseudomonas, Actinobacteria, Lactobacillus, Pediococcus were the predominate genera at the long-term fermentation stage, but were found only rarely in the short-term fermentation stage. C/N ratios increased and the concentration of the unpleasant odor substance 3-hydroxy-5-methylisoxazole (3-MI) decreased with prolonged period of fermentation. Redundancy analysis (RDA) demonstrated that the relative abundance of Firmicutes, Actinobacteria, Acidobacteria and Proteobacteria had a close relationship with degradation of 3-MI and increasing C/N ratio. These results provide valuable additional information about bacterial community composition during PM biodegradation in animal husbandry.  相似文献   

19.
This work has studied for the first time the structure and diversity of plant-parasitic nematodes (PPNs) infesting olive orchard soils in a wide-region in Spain that included 92 locations. It aims at determining which agronomical or environmental factors associated to the olive orchards are the main drivers of the PPNs community structure and diversity. Classical morphological and morphometric identification methods were used to determine the frequency and densities of PPNs. Thirteen families, 34 genera and 77 species of PPNs were identified. The highest diversity was found in Helicotylenchus genus, with six species previously reported in Spain and with H. oleae being a first report. Neodolichorhynchus microphasmis and Diptenchus sp., Diphtherophora sp., and Discotylenchus sp., usually considered fungal feeders, were also reported for the first time associated to olive rhizosphere. PPNs abundance ranged from 66 to 16,288 individuals/500-cm3 of soil with Helicotylenchus digonicus being the most prevalent species, followed by Filenchus sp., Merlinius brevidens and Xiphinema pachtaicum. Nematode abundance and diversity indexes were influenced by olive cultivar, and orchard and soil management practices; while olive variety and soil texture were the main factors driving PPN community composition. Soil physicochemical properties and climatic characteristics most strongly associated to the PPN community composition included pH, sand content and exchangeable K, and maximum and minimum average temperature of the sampled locations. Our data suggests that there is a high diversity of PPNs associated to olive in Southern Spain that can exert different damage to olive roots depending on the olive variety and their abundance. Further analysis to determine the resistance levels of most common olive varieties to the prevalent PPNs in Spain will help to choose the most appropriate ones for the establishment of new plantations. This choice will take into consideration the specific soils and environments where those olive varieties will be established.  相似文献   

20.
以文峪河上游河岸带不同演替阶段的8种植被类型五花草甸(WH)、沙棘林(HR)、柳树林(SS)、山杨林(PC)、山杨白桦林(PQ)、山杨白桦落叶松林(PQL)、落叶松云杉林(LP)和云杉林(PM)土壤为研究对象,采用高通量测序技术测定nirS反硝化细菌群落组成及相对丰度,乙炔抑制法测定反硝化酶活性(DEA)。对其土壤理化性质及反硝化细菌群落组成及相对丰度进行方差分析,采用冗余分析(RDA)和Spearman相关性分析不同植被类型及土层反硝化细菌群落结构及功能及土壤理化因子的关联性。结果表明:1)不同植被类型及土层土壤理化因子存在显著差异,柳树林(SS)0—15 cm土层硝态氮(NO~+_3-N)含量显著高于其他植被类型各土层;2)土壤反硝化菌群多样性指数在五花草甸(WH)、山杨白桦林(PQ)和云杉林(PM)中较其他植被类型高;3)沙棘林(HR)及柳树林(SS)反硝化酶活性(DEA)显著高于其他植被类型;4)不同植被类型反硝化优势菌群分布存在显著差异及特异性,如浮霉菌门(Planctomycetes)仅在落叶松云杉混交林(LP)和云杉林(PM)植被类型15—30 cm土层中分布;5)土壤pH、土壤有机碳(SOC)、土壤铵态氮(NH~+_4-N)和硝态氮(NO~+_3-N)等是影响土壤反硝化细菌群落结构及组成的重要因子,其中土壤铵态氮和硝态氮含量变化是导致土壤反硝化菌群多样性和反硝化酶活性差异的关键因子。本研究揭示了文峪河上游河岸带不同植被类型土壤反硝化细菌群落结构及功能的变化和分布特征,为进一步研究该区域河岸带氮素循环及水体污染防治提供重要参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号