首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gui  Mengyao  Chen  Qian  Ma  Tao  Zheng  Maosheng  Ni  Jinren 《Applied microbiology and biotechnology》2017,101(4):1717-1727

Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L−1 h−1), higher nitrite accumulation (47.3∼99.8 mg L−1), and higher N2O emission ratios (5∼283 mg L−1/mg L−1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L−1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L−1) > Cu(II) (0.5∼5 mg L−1) > Ni(II) (2∼10 mg L−1) > Zn(II) (25∼50 mg L−1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  相似文献   

2.
The potential for microscale bacterial Fe redox cycling was investigated in microcosms containing ferrihydrite-coated sand and a coculture of a lithotrophic Fe(II)-oxidizing bacterium (strain TW2) and a dissimilatory Fe(III)-reducing bacterium (Shewanella alga strain BrY). The Fe(II)-oxidizing organism was isolated from freshwater wetland surface sediments which are characterized by steep gradients of dissolved O2 and high concentrations of dissolved and solid-phase Fe(II) within mm of the sediment–water interface, and which support comparable numbers (105–106 mL−1) of culturable Fe(II)-oxidizing and Fe(III)-reducing reducing. The coculture systems showed minimal Fe(III) oxide accumulation at the sand-water interface, despite intensive O2 input from the atmosphere and measurable dissolved O2 to a depth of 2 mm below the sand–water interface. In contrast, a distinct layer of oxide precipitates formed in systems containing Fe(III)-reducing bacteria alone. Examination of materials from the cocultures by fluorescence in situ hybridization indicated close physical juxtapositioning of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the upper few mm of sand. Our results indicate that Fe(II)-oxidizing bacteria have the potential to enhance the coupling of Fe(II) oxidation and Fe(III) reduction at redox interfaces, thereby promoting rapid microscale cycling of Fe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
砷污染作为全球性环境问题已经引起了人们的高度重视。无机砷化合物可与铁氢氧化物络合通过共沉淀作用去除。因此,利用具有砷耐性的铁氧化菌氧化环境中的铁元素去除砷化合物具有潜在的应用前景。目前已有利用铁氧化菌去除环境中砷污染物的报道。用于砷污染修复的铁氧化菌必须有一定的砷耐性才能在含砷环境中行使功能。微生物是否具有砷耐性往往取决于基因,并且不同的菌株具有不同的生理特征,适宜不同砷污染环境的修复。本文通过对8株代表性的铁氧化菌砷耐性基因的总结,阐述其耐砷机制、研究概况及应用前景,以期为铁氧化菌用于除砷新技术的开发提供参考。  相似文献   

4.

To enhance the multiplication rate in Musa acuminata Colla (banana; ‘Grand Nain’) organogenesis, higher amounts of thiamine along with different sugar types and concentrations were evaluated at the proliferation phase. Thiamine at 1, 10, 50, 100, and 200 mg L−1 was compared with 0.1 mg L−1 thiamine found in conventional Murashige and Skoog (MS) medium. Maximum proliferation of banana was induced with 100 mg L−1 thiamine. Additionally, 15, 30, and 45 g L−1 sucrose, glucose, fructose, and sorbitol combined with regular and optimal levels of thiamine were tested. Glucose at 30 g L−1 most improved shoot proliferation alone and enhanced shoot proliferation further, when combined with 100 mg L−1 thiamine, followed by sucrose and fructose, whereas sorbitol completely inhibited growth and caused tissue browning. All evaluated vegetative traits were significantly affected by sugar type and concentration, and thiamine levels, unlike the photosynthetic pigments. Moreover, genetic stability of the plants recovered from the enhanced protocol was confirmed by inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. A total of 230 bands generated by both marker types were monomorphic for the randomly selected regenerated plants, compared with their mother plant. Thus, the proliferation medium supplemented with 30 g L−1 glucose and 100 mg L−1 thiamine could be recommended for banana organogenesis. Results herein are of great importance and helpful in enhancing the commercial in vitro propagation protocols of banana, without the need of increasing the number of subcultures, which can cause somaclonal variation.

  相似文献   

5.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C.  相似文献   

6.
Thymus vulgaris L. (thyme), Origanum majorana L. (marjoram), and Origanum vulgare L. (oregano) were used to determine whether light modification (plants grown under nets with 40% shaded index or in un-shaded open field) could improve the quantity and quality of essential oils (EOs) and antioxidant activity. The yield of EOs of thyme, marjoram, and oregano obtained after 120 min of hydrodistillation was 2.32, 1.51, and 0.27 mL/100 g of plant material, respectively. At the same time under shading conditions plants synthetized more EOs (2.57, 1.68, and 0.32 mL/100 g of plant material). GC/MS and GC/FID analyses were applied for essential oils determinations. The main components of the thyme essential oil are thymol (8.05–9.35%); γ-terpinene (3.49–4.04%); p-cymene (2.80–3.60%) and caryophyllene oxide (1.54–2.15%). Marjoram main components were terpinene 4-ol (7.44–7.63%), γ-terpinene (2.82–2.86%) and linalool (2.04–2.65%) while oregano essential oil consisted of the following components: caryophyllene oxide (3.1–1.93%); germacrene D (1.17–2.0%) and (E)-caryophyllene (1.48–1.1%). The essential oil from thyme grown under shading (EC50 value after 20 min of incubation) have shown the highest antioxidant activity – 0.85 mg mL−1 in comparison to marjoram and oregano (shaded plants EC50 19.97 mg mL−1 and 7.02 mg mL−1 and unshaded, control plants EC50 54.01 mg mL−1 and 7.45 mg mL−1, respectively). The medicinal plants are a good source of natural antioxidants with potential application in the food and pharmaceutical industries. For production practice, it can be recommended to grow medicinal plants in shading conditions to achieve optimal quality parameters.  相似文献   

7.
Microaerobic activated sludge (MAS) is a one-stage process operated at 0.5–1.0 mg l−1 dissolved oxygen (DO) aiming at simultaneous nitrification and denitrification. We used molecular techniques and a comprehensive nitrogen (N)-transformation activity test to investigate the dominant NH3-oxidizing and N2-producing mechanism as well as the dominant ammonia-oxidizing bacteria (AOB) species in sludge samples individually collected from an MAS system and a conventional anoxic/oxic (A/O) system; both systems were operated at a normal loading rate (i.e. 1.0 kg chemical oxygen demand (COD) m−3 day−1 and 0.1 kg NH4+-N m−3 day−1) in our previous studies. The DO levels in both systems (aerobic: conventional A/O system; microaerobic: MAS system) did not affect the dominant NH3-oxidizing mechanism or the dominant AOB species. This study further demonstrated the feasibility of a higher loading rate (i.e. 2.30 kg COD m−3 day−1 and 0.34 kg NH4+-N m−3 day−1) with the MAS process during sewage treatment, which achieved a 40% reduction in aeration energy consumption than that obtained in the conventional A/O system. The increase in loading rates in the MAS system did not affect the dominant NH3-oxidizing mechanism but did impact the dominant AOB species. Besides, N2 was predominantly produced by microaerobic denitrification in the MAS system at the two loading rates.  相似文献   

8.

Phellodendron chinense Schneid is an important Chinese herb with berberine and phellodendrine in stems and leaves, but with little information available on in vitro culture of this species. Disinfection of explants in 75% alcohol for 45 s, sterilization in 0.1% HgCl2 for 20 min, and submersion in 1.0 mol L−1 gibberellin3 (GA3) solution for 24 h was the optimal condition for seed germination. Murashige and Skoog’s (MS) medium supplemented with 2.0 mg L−1 6-benzylaminopurine (6-BA) in combination with 1.5 mg L−1 1-naphthylacetic acid (NAA) was optimal for callus induction. MS medium supplemented with 2.0 mg L−1 6-BA was the appropriate medium for induction of adventitious shoots, and 1/2MS medium supplemented with 2.0 mg L−1 indole-3-butytric acid (IBA) and 0.5% active carbon was the optimal medium for root induction. The 15-d survival rate of regenerated plantlets after transplanting to basins containing perlite and peat moss (1:4) was greater than 80%, and the berberine and phellodendrine accumulation was lower in callus compared with regenerated plantlets. The establishment of highly efficient regeneration system provides technical support for genetic breeding of Phellodendron chinense Schneid.

  相似文献   

9.
A Pseudomonas isolate, designated PAHAs-1, was found capable of reducing arsenate and degrading polycyclic aromatic hydrocarbons (PAHs) independently and simultaneously. This isolate completely reduced 1.5 mM arsenate within 48 h and removed approximately 100% and 50% of 60 mg l−1 phenanthrene and 20 mg l−1 pyrene within 60 h, respectively. Using PAHs as the sole carbon source, however, this isolate showed a slow arsenate reduction rate (4.62 μM h−1). The presence of arsenic affected cell growth and concurrent PAHs removal, depending on PAH species and arsenic concentration. Adding sodium lactate to the medium greatly enhanced the arsenate reduction and pyrene metabolism. The presence of the alpha subunit of the aromatic ring-hydroxylating dioxygenase (ARHD) gene, arsenate reductase (arsC) and arsenite transporter (ACR3(2)) genes supported the dual function of the isolate. The finding of latter two genes indicated that PAHAs-1 possibly reduced arsenate via the known detoxification mechanism. Preliminary data from hydroponic experiment showed that PAHAs-1 degraded the majority of phenanthrene (>60%) and enhanced arsenic uptake by Pteris vittata L. (from 246.7 to 1187.4 mg kg−1 As in the fronds). The versatile isolate PAHAs-1 may have potentials in improving the bioremediation of PAHs and arsenic co-contamination using the plant-microbe integrated strategy.  相似文献   

10.

Warburgia ugandensis Sprague is a woody species in the family Canellaceae and an important source of medicines in Africa. Natural propagation of W. ugandensis is problematic due to its recalcitrant seeds and lack of an efficient in vitro regeneration system for this species. This study describes an efficient regeneration protocol. Petiole bases and shoot tips were used as explants. Callus tissue developed when the explants were cultured on Murashige and Skoog medium containing 30 g L−1 sucrose and 7 g L−1 agar (MS30 medium), supplemented with 1.0 mg L−1 indole-3-butyric acid (IBA), 1.6 mg L−1 6-benzylaminopurine (BA), and 0.1 mg L−1 thidiazuron (TDZ). Adventitious buds were efficiently induced from the callus when the MS30 medium was supplemented with 0.8 mg L−1 BA and 0.2 mg L−1 IBA. Root induction occurred within 7–10 d on half-strength MS30 medium supplemented with 0.8–1.0 mg L−1 1-napthalene acetic acid (NAA), 0.2 mg L−1 IBA, and 0.03% (w/v) activated charcoal (AC). Roots were followed by root elongation on the same medium but lacking NAA and IBA. Approximately 50% of the plantlets cultured produced roots, while more than 80% of the plantlets survived and successfully grew to maturity.

  相似文献   

11.

The objective of this study was to set up a plant micropropagation facility to mass propagate sugarcane, energy cane, and related clonally propagated species. An efficient methodology for micropropagation of energy cane and perennial grasses using temporary immersion bioreactors was developed. Several different methods of tissue culture initiation, multiplication, and rooting were evaluated for several varieties of sugarcane (Saccharum officinarum L.) and sugarcane-related species such as Erianthus spp., Miscanthus spp., and Sorghum spp. × sugarcane hybrids, all from a germplasm collection. Apical meristem cultures were initiated for all genotypes that were micropropagated, when liquid or semisolid Murashige and Skoog (MS) medium was used, which was supplemented with 0.1–0.2 mg L−1 BAP, 0.1 mg L−1 kinetin, 0–0.1 mg L−1 NAA, and 0–0.2 μg L−1 giberellic acid. These cultures produced shoots between 4 and 8 wk after initiation. Shoot regeneration from leaf rolls or immature inflorescences was observed as early as 4 wk after initiation. Shoot multiplication was successful for all genotypes cultured in MS medium with 0.2 mg L−1 BAP and 0.1 mg L−1 kinetin. Energy cane had a significantly higher combined multiplication rate when grown under four or five LED lamps than when grown under three LED lamps, or under fluorescent lights in a growth chamber. The addition of 2 mg L−1 NAA produced faster and better rooting in all of the genotypes tested. Shoots produced well-developed roots after one cycle of 15–21 d in the bioreactors. The maximum number of plantlets produced per bioreactor was 1080. Plantlets developed a vigorous root system and were ready to be transplanted into the field after 2 mo. A protocol was standardized for different energy cane clones that were recommended for their biomass production and cell wall composition. Different tissues were used to speed up or facilitate tissue culture initiation. Visual assessment of micropropagated plants in the field did not show any off-types, based on gross morphological changes of plant morphology or disease reaction, compared to plants of the same genotype derived from a traditional propagation method (stem cuttings). This is the first report of energy cane and Miscanthus spp. micropropagation using the SETIS bioreactor.

  相似文献   

12.
Phenol is a common pollutant which is found in wastewater of many industries and removal of phenol from the industrial effluents is a major challenge. Recently, the use of hairy roots has been probed for the removal of phenol. In the present study, phenol at various concentrations (100–500 mg L−1) was treated with hairy roots of Helianthus annuus (sunflower hairy roots, SHRs). SHRs removed 100 mg L−1 of phenol after 144 h of incubation. The effect of polyethylene glycol (PEG), l-proline and d-glucose on the rate of phenol removal was also studied. l-proline enhanced the removal efficiency of SHRs resulting in the removal of 100 mg L−1 of phenol after 24 h while PEG did not show any effect on removal. Peroxidase activity was induced after 24 h of phenol addition. Phenol metabolism to generate catechol as a major metabolite was confirmed using HPLC and GC–MS analyses. The detection of small amounts of cis-cis muconic acid and fumaric acid in the reaction medium suggests that these metabolites are produced from the ring cleavage of catechol. The phytotoxicity and cytotoxicity results suggest the non-toxic nature of the resulting phenol metabolites.  相似文献   

13.

Randia echinocarpa, an endemic plant to Northwest Mexico, is used as food and in traditional medicine, and several of its biological activities have been demonstrated (antioxidant, antimutagenic, antidiabetic, and immunomodulatory). Plant tissue culture is a safe and scalable system for plant propagation and production of bioactive compounds. Therefore, this study aims to establish protocols for seed germination and callus culture of R. echinocarpa and to evaluate the antioxidant activity of methanol extracts (ME) of plantlets and calli via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) methods. Seeds were cultured in media with different concentrations of Murashige and Skoog (MS) salts and sucrose, and a higher germination rate and plantlet growth was observed in half-strength MS medium with 15 g L−1 of sucrose. Calli were obtained from cotyledon and hypocotyl explants cultured in MS media with different concentrations of benzyl aminopurine (BAP) and indole-3-acetic acid (IAA). All treatments induced callus formation in 100% of explants; however, the medium containing 1 mg L−1 BAP + 1 mg L−1 IAA was selected because it produced calli with higher biomass and friable texture. The ME of cotyledons showed the highest antioxidant activity values (μmol Trolox per 100 g dry weight) in DPPH (345.5) and ABTS (1166.4) assays, whereas the ME of calli from hypocotyls showed a higher antioxidant activity than the ME of calli from cotyledons in both antioxidant assays. The tissue culture protocols established here will be useful for R. echinocarpa germplasm conservation and propagation, as well as for the production of bioactive compounds.

  相似文献   

14.
Lactoalbumin hydrolysate (LH) at 100 mg L−1 with methyl jasmonate (MJ) at 2 mg L−1 synergistically stimulated ginsenoside accumulation in Panax quinquefolium cells compared with 100 mg L−1 LH. Combination elicitors led to higher ginsenoside productivity (45.93 mg L−1) than single treatment of 100 mg L−1 LH (31.37 mg L−1). This present result will be helpful in providing a tool for enhancing the productivity of ginsenoside by Panax quinquefolium cell cultures on a commercial scale.  相似文献   

15.

Echinodorus ‘Indian Red’ is an underwater plant, used worldwide for aquarium ornamentation. An efficient method for in vitro propagation and plantlet acclimatization of this popular aquarium plant was standardized. Surface-disinfected shoot-tips were cultured in submerged conditions in a solid–liquid bilayer medium, consisting of an upper, liquid layer (sterile distilled water) and a lower, solid layer Murashige and Skoog (MS) basal medium supplemented with 3.0% (w/v) sucrose, 0.8% (w/v) agar-agar, and plant growth regulators (PGRs) in different combinations and concentrations. The combination of 2.5 mg L−1 6-benzylaminopurine and 1.0 mg L−1 α-naphthaleneacetic acid improved the multiplication rate to a maximum of 26.8 ± 0.51 shoots per explant after 60 d of culture. The number of multiplied shoots increased with each regeneration cycle, thus from only 26.8 ± 0.51 shoots per explant (first regeneration cycle), this number increased to 33.5 ± 0.58 (second regeneration cycle), and to 38.3 ± 0.62 for the third regeneration cycle with the same medium composition. The highest number of roots (8.3 ± 0.28) per shoot was induced in the presence of 1.0 mg L−1 indole-3-butyric acid, but further growth of these roots was stunted. The best rooting was achieved on PGR-free ½-strength MS medium, where 6.1 ± 0.21 roots per shoot were induced with 5.8 ± 0.35 cm length after 30 d of culture. The regenerated plantlets were successfully acclimatized to submerged underwater conditions, with 100% survival rate. The present protocol is suitable for the commercial propagation of Echinodorus ‘Indian Red’ for aquarium-industries.

  相似文献   

16.
In aquaculture, the application of predictive techniques based on statistical-mathematical modeling allows not only to project and study individual growth trajectories, but also to evaluate the probable effect of external factors that would explain their behavior over time. This is the case of this work, which takes the above as a principle to demonstrate the effect of water temperature on the growth of the Pacific white shrimp Litopenaeus vannamei cultured in fresh water (0 mg L−1), using densities of 90, 120, 180, 230, 280 and 330 shrimp m−2. Shrimp were exposed to water temperature between 11.5 °C and 31.6 °C. Temperature effect was determined using a parameterized Gompertz growth model with experimental data from each initial culture density. The best shrimp productivity yield was obtained above 26 °C, and the least efficient was below 22 °C. Densities of 90–180 shrimp m−2 and 230–330 shrimp m−2 generated a maximum average size of 12.6 g and 8.8 g in 30 weeks, respectively. Here we present the implications of the effect of water temperature on the intensive culture of white shrimp with zero salinity (0 mg L−1) using these techniques from a predictive analytical approach.  相似文献   

17.

The use of plants in treatments has been as old as humanity and it has preserved its popularity for centuries til now because of their availability, affordability and safeness. However, despite their widespread use, safety and quality issues have been major concerns in the world due to industrial- and anthropogenic-based heavy metal contamination risks. Thus, this study was attempted to analyze the heavy metal levels and mineral nutrient status of widely used medicinal plants in Turkey to have insights about their health implications on humans. The plant concentrations of B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn were analyzed by ICP-OES in the leaves of 44 medical plants purchased from herbal markets of three different districts of Istanbul/Turkey. The measured lowest to highest concentrations were 0.065–79.749 mg kg−1 B, 921.802–12,854.410 mg kg−1 Ca, 0.020–0.558 mg kg−1 Cd, 0.015–4.978 mg kg−1 Cr, 0.042–8.489 mg kg−1 Cu, 34.356–858.446 mg kg−1 Fe, 791.323–15,569.349 mg kg−1 K, 102.236–2837.836 mg kg−1 Mg, 4.915–91.519 mg kg−1 Mn, 10.224–3213.703 mg kg−1 Na, 0.001–5.589 mg kg−1 Ni, 0.003–3.636 mg kg−1 Pb and 2.601–36.102 mg kg−1 Zn. Those levels in plants were in acceptable limits though some elements in some plants have high limits which were not harmful. Variations (above acceptable limits) in element concentrations also indicated that these plants could be contaminated with other metals and that genetic variations may influence accumulation of these elements at different contents. Overall, analyzed medicinal plants are expected not to pose any serious threat to human health.

  相似文献   

18.
Little is currently known about the potential impact of silver nanoparticles (AgNPs) on estuarine microbial communities. The Colne estuary, UK, is susceptible to oil pollution through boat traffic, and there is the potential for AgNP exposure via effluent discharged from a sewage treatment works located in close proximity. This study examined the effects of uncapped AgNPs (uAgNPs), capped AgNPs (cAgNPs) and dissolved Ag2SO4, on hydrocarbon-degrading microbial communities in estuarine sediments. The uAgNPs, cAgNPs and Ag2SO4 (up to 50 mg L−1) had no significant impact on hydrocarbon biodegradation (80–92% hydrocarbons were biodegraded by day 7 in all samples). Although total and active cell counts in oil-amended sediments were unaffected by silver exposure; total cell counts in non-oiled sediments decreased from 1.66 to 0.84 × 107 g−1 dry weight sediment (dws) with 50 mg L−1 cAgNPs and from 1.66 to 0.66 × 107 g−1 dws with 0.5 mg L−1 Ag2SO4 by day 14. All silver-exposed sediments also underwent significant shifts in bacterial community structure, and one DGGE band corresponding to a member of Bacteroidetes was more prominent in non-oiled microcosms exposed to 50 mg L−1 Ag2SO4 compared to non-silver controls. In conclusion, AgNPs do not appear to affect microbial hydrocarbon-degradation but do impact on bacterial community diversity, which may have potential implications for other important microbial-mediated processes in estuaries.  相似文献   

19.
A pot experiment was conducted to investigate into effects of molybdenum (Mo) on the secondary metabolic process of glycyrrhizic acid (GA). One-year-old seedlings were grown in pots with washed vermiculite and sand. Hoagland nutrition solution was irrigated with four concentrations: 0, 0.52, 5.2 and 10.4 mg L−1. The accumulations of GA and its biosynthetic precursors (β-amyrin and squalene) and then expression of the key synthase (β-amyrin synthase, β-AS) were studied on 35, 70 and 105 d. In the early stage, that was on the 35 and 70 d, the contents of squalene and GA, and the expression of β-AS gene under 0.52 and 5.2 mg L−1 Mo treatments were significantly higher than that under 0 and 10.4 mg L−1 Mo. There was a contrary result of β-amyrin. However, the content of squalene under 0 mg L−1 Mo was the highest on 105 d. Thus, it suggested an appropriate concentration of Mo could promote the accumulation of GA, by affecting the biosynthetic process of GA at a certain time. Practically, the time and amount of application of Mo on Glycyrrhiza uralensis should be the noted.  相似文献   

20.
A soil sample collected underneath a sewage pipe of the west side of Yangpu refining factory in Haikou city, Hainan Province, China was inoculated in minimum medium supplemented with fluoranthene. After 8 enrichment cycles, a bacterial consortium (Y12) was obtained through water-silicone oil dual system in the laboratory. The consortium Y12 could degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, anthracene, fluoranthene, pyrene and benzo[a]pyrene. The consortium Y12 was repeatedly cultured for more than 40 circles, from which a bacterial strain FB3 was isolated. This strain was identified as a Sphingobium sp. through the 16S rDNA sequence alignment. Strain FB3 could degrade 99 ± 0.4%, 67 ± 2%, 97 ± 3%, 72 ± 8%, and 6 ± 2% (uncorrected degradation percentages) of phenanthrene, anthracene, fluoranthene and pyrene each at level of 100 mg L−1 and benzo[a]pyrene at 10 mg L−1, respectively, in 10 days, which the five PAHs were the sole carbon source as a mixture in minimum medium. The degradation percentages of phenanthrene, anthracene, fluoranthene, pyrene (each at level of 100 mg L−1) and benzo[a]pyrene (10 mg L−1) by consortium Y12 were 99 ± 0.1%, 65 ± 3%, 99 ± 0.3%, 79 ± 1% and 7 ± 6%, respectively, in 10 days. Strain FB3 could degrade those PAHs under a range of pH 5–9, being optimum at pH 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号