首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives: The lipopolysaccharide (LPS)-induced acute lung injury (ALI) model has been widely applied for pathophysiological and pharmacological research. The aim of present study is to understand the variation of acute pulmonary inflammation between mouse strains. Methods: The present study investigated the susceptibility of acute production of inflammatory mediators, e.g. cytokines, chemokines and others, to LPS in C57BL/6J, Balb/cJ, DBA/1J, CD-1, NMRI, DBA/2J, A/J, and C3H/HeN mice. Results: The susceptibility to intra-tracheal challenge with LPS varied between measured variables, durations and strains. General lung hyper-reactive susceptibility to LPS-induced pulmonary production of 6–8 inflammatory mediators followed the order NMRI, Balb/cJ, C3H/HeN, A/J, C57BL/6J, DBA/1J, DBA/2J and CD-1 mice at 4 h, and A/J, C3H/HeN, CD-1, NMRI, C57BL/6J, Balb/cJ, DBA/2J and DBA/1J mice at 24 h. Conclusions: Our data provide information for scientists to consider the proper strain of mice for the measurement of specific inflammatory mediators and to select sensitive or resistant mouse strains for understanding genetic variation in the pathogenesis and for the screening of target-oriented drug development.  相似文献   

2.
《Small Ruminant Research》2008,74(1-3):174-180
In this study, biological samples (slaughterhouse material) were collected from 30 sheep and 36 goats and classified according to gestational stage into either early or late gestation. Samples consisted of allantoic fluid, amniotic fluid, fetal liver, fetal kidney, fetal thyroid gland, maternal plasma and liver to determine selenium (Se) concentrations throughout gestation. The Se concentrations in the allantoic fluid, fetal liver and kidney increased significantly (p < 0.01) during late gestation. Concurrently, the Se concentrations in amniotic fluid, maternal plasma and liver decreased significantly (p < 0.01) over time. Significant (p < 0.01) positive relationships were recorded between the age of the fetus and Se concentrations in the allantoic fluid (r = 0.57–0.75), fetal liver (r = 0.43–0.59) and kidney (r = 0.80–0.81) in both sheep and goats. A significant (p < 0.05) positive relationships were also recorded between the Se concentrations in the allantoic fluid and fetal liver (r = 0.35–0.37), the maternal plasma and liver Se concentrations (r = 0.37–0.57) between sheep and goats. A significant (p < 0.05) negative correlation was recorded between the Se concentrations in the allantoic fluid with maternal plasma of sheep (r = −0.41) as well as between the fetal liver and maternal liver Se (r = −0.22 to 0.50) and a negative correlation (r = −0.42 to 0.43) (p < 0.01) between Se concentrations in the fetal liver and amniotic fluid in both sheep and goats, respectively. Se concentration in the fetal liver was significantly (p < 0.01) higher than that of the kidney and thyroid. In the thyroid gland no morphological differences were noted. Strong fetal–maternal relationships in Se concentration were evident throughout the gestational period and dams seem to sacrifice Se levels in order to maintain that in the fetus. Se concentrations in the amniotic and allantoic fluids could be used as a possible indicator of the Se status of the fetus throughout gestation.  相似文献   

3.
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5–20 KU/kg IP 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg IP on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs 11, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p < .05), and dose-response studies (10–50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance.  相似文献   

4.
Two experiments were conducted to study the efficacy and causes of medium-chain triglycerides (MCT) in sow diet in improving the survival of neonatal pigs. In Experiment 1, beginning on d84 of gestation and continuing through d28 of lactation, 51 sows were fed corn–soybean meal diet mixed with either soybean oil (SO; n=17), coconut oil (CO; n=18), or MCT (n=16) in a proportion of 9 : 1 by weight. The highest improvement in survival of pigs by sows fed MCT (p<0.01) or CO (p<0.05) was observed during the first three days after birth in pigs weighing <1100 g at birth, compared with sows fed SO. Their three-day survival was 98.6, 80.0 and 47.6%, respectively, for MCT, CO and SO groups. In Experiment 2, beginning on d84 of gestation and continuing through farrowing, 24 sows, 8 sows per treatment, were fed diets as in Experiment 1. Liver glycogen content of pigs 4 h after born from sows fed MCT (p<0.10) and CO (p<0.01), and muscle glycogen of pigs from sows fed MCT (p<0.01) and CO (p<0.10) were increased, compared to those of pigs from sows fed SO. Plasma albumin was increased by MCT and CO (p<0.01), relative to SO. The results suggest that MCT or CO in sow diets may enhance the body glycogen stores and maturity of pigs at birth and, hence, their survival, particularly in pigs with low birth weight during the first three days of life.  相似文献   

5.
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non‐mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS‐producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug‐initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2‐related factor 2 (Nrf2), a ROS‐sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108–130, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
《Cytokine》2015,73(2):146-153
AimImbalance of T-helper-cell (TH) subsets (TH1/TH2/TH17) and regulatory T-cells (Tregs) is suggested to contribute to the pathogenesis of Systemic lupus erythematosus (SLE). Therefore, we evaluated their cytokine secretion profile in SLE patients and their possible association with disease activity.MethodsSixty SLE patients, 24 rheumatoid arthritis (RA) patients and 24 healthy volunteers were included in this study. Demographic, clinical, disease activity and serological data were prospectively assessed. Plasma cytokines levels of TH1 (IL-12, IFN-γ), TH2 (IL-4, IL-6, IL-10), TH17 (IL-17, IL-23) and Treg (IL-10 and TGF-β) were measured by enzyme linked immunosorbent assays (ELISA).ResultsSLE patients were found to have significantly higher levels of IL-17 (p < 0.001), IL-6 (p < 0.01), IL-12 (p < 0.001) and IL-10 (p < 0.05) but comparable levels of IL-23 and IL-4 and slight reduction (but statistically insignificant) of TGF-β levels compared to controls. IL-6, IL-10 and IL-17 were significantly increased (p < 0.05) with disease activity. The RA group exhibited significantly higher levels of plasma IL-4 (p < 0.01), IL-6 (p < 0.05), IL-17 (p < 0.001), IL-23 (p < 0.01) and TGF-β (p < 0.5) and lower IFN-γ (p < 0.001) and IL-10 (p < 0.01) than those of healthy subjects.ConclusionOur study showed a distinct profile of cytokine imbalance in SLE patients. Reduction in IFN-γ (TH1) and TGF-β1 (Treg) with the elevation in IL-6 and IL-17 (TH17) could imply skewing of T-cells toward TH17 cells. Breaking TH17/Treg balance in peripheral blood may play an important role in the development of SLE and could be responsible for an increased pro-inflammatory response especially in the active form of the disease.  相似文献   

7.
A randomized, double-blind, placebo controlled trial of a single dose of 200,000 I.U. of vitamin A with daily zinc supplementation was conducted with children in Mojo village, Surabaya City. Children aged 48 to 60 months were randomized to receive a single dose of 200,000 I.U. of vitamin A plus zinc sulfate (n = 12) or a single dose of 200,000 I.U. of vitamin A (n = 12) plus placebo six days a week for six months. Children were evaluated weekly for nutrient intake and for IGF-1, C-reactive protein levels, gamma globulin levels, serum zinc, serum retinol, bone age and the index height for age at six months.At the end of the study, there was a significant increase in the serum retinol level (p < 0.03), serum zinc level (p < 0.03), IGF-1 hormone (p < 0.04) and Z-score height for age (p < 0.001), bone age (p < 0.01), and gamma globulin level (p < 0.04) and a significant decrease in the amount of infection/inflammation measured by CRP level (p < 0.001). There was also a significant correlation between CRP level and height for age (p < 0.01), and between gamma level and height for age (p < 0.01).These results suggest that combined vitamin A and zinc supplementation reduces the risk of infection and increases linear growth among children, and thus may play a key role in controlling infection and stunted growth for children under five years old.  相似文献   

8.
d-Phenylalanine is capable of trapping reactive oxygen species (ROS) and reactive nitrogen species (RNS) by forming three major hydroxylation (o-, m-, p-tyrosine) and two major nitration products (nitrophenylalanine, nitrotyrosine). Here, we show how a method for the analysis of these phenylalanine derivatives was established using isocratic HPLC (Nucleosil120, C18 column) coupled with photodiode array detection and validated for cell-free in vitro and in vivo determination of radical formation. An ideal separation was achieved using a mobile phase consisting of 5% acetonitrile, 50 mM KH2PO4, pH 3.0, a column temperature of 35 °C and a flow rate of 1.0 mL/min. Limits of detection were in the range of 5–100 nM. Linearity was given within 5 nM–100 μM (correlation coefficient >0.999). Retention times as well as peak heights exhibited a high precision (RSD: ≤0.1% and <1.5%, respectively). The feasibility of d-phenylalanine for ROS/RNS measurement was demonstrated in a cell-free in vitro assay using peroxynitrite and by analysis of brain samples of mice treated with the dopaminergic neurotoxin 6-hydroxydopamine.  相似文献   

9.
Horses’ emotional reactivity is of a major importance in riding schools where a variety of more or less experienced riders are present. Horses’ learning abilities may also be important for work. Previous studies have shown that different intrinsic or extrinsic factors, such as breed, housing conditions, sire, and work may have an influence, and that different facilities present horses with different characteristics. In this study, we tested the reactions of 184 horses from 22 riding schools, all practicing the same type of work, but differing in particular in terms of housing conditions, to 3 emotionality tests and to one instrumental learning task, in order to (1) try and characterize riding schools, and (2) determine how general management could explain some of the potential differences observed between sites.Multivariate analysis conducted on the whole set of data showed that riding schools could be classified into four categories from those where horses showed low emotionality levels and good learning abilities to those where horses showed high emotionality levels and poor learning abilities. Breed, in accordance to previous studies, had an impact on the time to cross a novel obstacle in hand (“Bridge Test”) (Kruskall–Wallis, H (14, N = 184) = 27.08, p < 0.05) while housing conditions (e.g. box housing) influenced emotionality (emotionality index, MW: p < 0.05), when horses were released in the arena. Box housing was associated with more active locomotion patterns (including trot, canter and passage) (MW: p < 0.005). These results underline the importance for riding schools to take into account both the individual characteristics of the horse, and in particular the breed, and to consider the impact of general management including housing conditions, on horses’ reactivity, and its consequences in terms of human security.  相似文献   

10.
The aim of this study was to determine the effects of anterior cruciate ligament reconstruction (ACLR) on sub-maximal quadriceps force control with respect to quadriceps and hamstring muscle activity. Thirty ACLR individuals together with 30 healthy individuals participated. With real-time visual feedback of muscle force output and electromyographic electrodes attached to the quadriceps and hamstring muscles, subjects performed an isometric knee extension task where they increased and decreased their muscle force output at 0.128 Hz within a range of 5–30% maximum voluntary capacity. The ACLR group completed the task with more error and increased medial hamstring and vastus medialis activation (p < 0.05). Moderate negative correlations (p < 0.05) were observed between quadriceps force control and medial (Spearman’s rho = −0.448, p = 0.022) and lateral (Spearman’s rho = −0.401, p = 0.034) hamstring activation in the ACLR group. Diminished quadriceps sub-maximal force control in ACLR subjects was reflective of medial quadriceps and hamstring dyskinesia (i.e., altered muscle activity patterns and coordination deficits). Within the ACLR group however, augmented hamstring co-activation was associated with better quadriceps force control. Future studies should explore the convergent validity of quadriceps force control in ACLR patients.  相似文献   

11.
Glucocorticoids including betamethasone (BM) are routinely administered to women entering into early preterm labor to facilitate fetal lung development and decrease infant mortality; however, fetal steroid exposure may lead to deleterious long term consequences. In a sheep model of fetal programming, BM-exposed (BMX) offspring exhibit elevated mean arterial pressure (MAP) and decreased baroreflex sensitivity (BRS) for control of heart rate by 0.5-years of age associated with changes in the circulating and renal renin-angiotensin systems (RAS). In the brain solitary tract nucleus, angiotensin (Ang) II actions through the AT1 receptor oppose the beneficial actions of Ang-(1-7) at the Mas receptor for BRS regulation. Therefore, we examined Ang peptides, angiotensinogen (Aogen), and receptor expression in this brain region of exposed and control offspring of 0.5- and 1.8-years of age. Mas protein expression was significantly lower (>40%) in the dorsal medulla of BMX animals at both ages; however, AT1 receptor expression was not changed. BMX offspring exhibited a higher ratio of Ang II to Ang-(1-7) (2.30 ± 0.36 versus 0.99 ± 0.28; p < 0.01) and Ang II to Ang I at 0.5-years. Although total Aogen was unchanged, Ang I-intact Aogen was lower in 0.5-year BMX animals (0.78 ± 0.06 vs. 1.94 ± 0.41; p < 0.05) suggesting a greater degree of enzymatic processing of the precursor protein in exposed animals. We conclude that in utero BM exposure promotes an imbalance in the central RAS pathways of Ang II and Ang-(1-7) that may contribute to the elevated MAP and lower BRS in this model.  相似文献   

12.
The objective of this study was to investigate the effects of lead exposure on spatial learning and memory capacity and the expression of amyloid β and phosphorylated tau proteins in the mouse hippocampus. A total of 24 adult C57BL/6 mice (12 of each sex) were mated at a 1:1 ratio. After delivery, the litters were normalised to 6 pups per litter. During the lactation period, the pups were randomly separated into four groups: control, early exposure, late exposure, or long-term exposure. These groups were not exposed to lead, exposed to lead from birth to week 24, exposed to lead from week 24 to week 48, or exposed to lead from birth to 48 weeks of age, respectively. Lead exposure was induced by providing Pb-contaminated drinking water at a concentration of 0.1%. All of the pups were fed until 72 weeks of age, at which time their spatial learning and memory capacity was evaluated via the Morris water maze test. Then, the lead levels in their blood and hippocampus were measured via graphite furnace atomic absorption spectrometry. The protein expression of amyloid β and phosphorylated tau in the hippocampus was detected via Western blot. The results revealed that the hippocampal and blood lead levels were significantly higher in all of the groups exposed to lead than the control group (P < 0.05). The spatial learning and memory performances of the lead-exposed groups were much poorer than those of the control group (P < 0.05). The expression levels of amyloid β and phosphorylated tau proteins were increased in the lead-exposed groups compared to the control group (P < 0.05). The enhanced expressions of amyloid β and phosphorylated tau proteins might contribute to the impairment in spatial learning and memory in the lead-exposed mice.  相似文献   

13.
BackgroundChromium is an essential mineral that contributes to normal glucose function and lipid metabolism. This study evaluated the effect of chromium picolinate (CrPic) supplementation in patients with type 2 diabetes mellitus (T2DM).MethodsA four month controlled, single blind, randomized trial was performed with 71 patients with poorly controlled (hemoglobin A1c [HbA1c] > 7%) T2DM divided into 2 groups: Control (n = 39, using placebo), and supplemented (n = 32, using 600 μg/day CrPic). All patients received nutritional guidance according to the American Diabetes Association (ADA), and kept using prescribed medications. Fasting and postprandial glucose, HbA1c, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides and serum ferritin were evaluated.ResultsCrPic supplementation significantly reduced the fasting glucose concentration (−31.0 mg/dL supplemented group; −14.0 mg/dL control group; p < 0.05, post- vs. pre-treatment, in each group) and postprandial glucose concentration (−37.0 mg/dL in the supplemented group; −11.5 mg/dL in the control group; p < 0.05). HbA1c values were also significantly reduced in both groups (p < 0.001, comparing post- vs. pre-treatment groups). Post-treatment HbA1c values in supplemented patients were significantly lower than those of control patients. HbA1c lowering in the supplemented group (−1.90), and in the control group (−1.00), was also significant, comparing pre- and post-treatment values, for each group (p < 0.001 and p < 0.05, respectively). CrPic increased serum chromium concentrations (p < 0.001), when comparing the supplemented group before and after supplementation. No significant difference in lipid profile was observed in the supplemented group; however, total cholesterol, HDL-c and LDL-c were significantly lowered, comparing pre- and post-treatment period, in the control group (p < 0.05).ConclusionsCrPic supplementation had a beneficial effect on glycemic control in patients with poorly controlled T2DM, without affecting the lipid profile. Additional studies are necessary to investigate the effect of long-term CrPic supplementation.  相似文献   

14.
ObjectiveTo investigate the effects of maternal lead (Pb) exposure on the learning and memory ability and expression of interleukin1-β (IL1-β), tumor necrosis factor (TNF-α) and beta amyloid protein (Aβ) in cerebral cortex of mice offspring.MethodsPb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups, respectively. On the PND21, the learning and memory ability were tested by water maze test and the Pb levels were also determined by graphite furnace atomic absorption spectrometry. The expression of IL1-β, TNF-α and Aβ in cerebral cortex was measured by immunohistochemistry and western blotting.ResultsThe Pb levels in blood and cerebral cortex of all exposure groups were significantly higher than that of the control group (P < 0.05). In water maze test, the performances of 0.5% and 1% groups were worse than that of the control group (P < 0.05). The expression of IL1-β, TNF-α and Aβ was increased in Pb exposed groups than that of the control group (P < 0.05).ConclusionsThe high expression of IL1-β, TNF-α and Aβ in the cerebral cortex of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.  相似文献   

15.
Background: Thromboxane synthase (TXS) metabolizes prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with angiogenesis and poor outcome. TXS has been identified as a potential therapeutic target in NSCLC. This study examines a link between TXS expression, angiogenesis, and survival in NSCLC. Methods: TXS and VEGF metabolite levels were measured in NSCLC serum samples (n = 46) by EIA. TXB2 levels were correlated with VEGF. A 204-patient TMA was stained for TXS, VEGF, and CD-31 expression. Expression was correlated with a range of clinical parameters, including overall survival. TXS expression was correlated with VEGF and CD-31. Stable TXS clones were generated and the effect of overexpression on tumor growth and angiogenesis markers was examined in-vitro and in-vivo (xenograft mouse model). Results: Serum TXB2 levels were correlated with VEGF (p < 0.05). TXS and VEGF were expressed to a varying degree in NSCLC tissue. TXS was associated with VEGF (p < 0.0001) and microvessel density (CD-31; p < 0.05). TXS and VEGF expression levels were higher in adenocarcinoma (p < 0.0001) and female patients (p < 0.05). Stable overexpression of TXS increased VEGF secretion in-vitro. While no significant association with patient survival was observed for either TXS or VEGF in our patient cohort, TXS overexpression significantly (p < 0.05) increased tumor growth in-vivo. TXS overexpression was also associated with higher levels of VEGF, microvessel density, and reduced apoptosis in xenograft tumors. Conclusion: TXS promotes tumor growth in-vivo in NSCLC, an effect which is at least partly mediated through increased tumor angiogenesis.  相似文献   

16.
Sphingolipids play a very important role in cell membrane formation, signal transduction, and plasma lipoprotein metabolism, and all these functions may have an impact on atherosclerotic development. Serine palmitoyl-CoA transferase (SPT) is the key enzyme in sphingolipid biosynthesis. To evaluate in vivo SPT activity and its role in sphingolipid metabolism, we applied homologous recombination to embryonic stem cells, producing mice with long chain base 1 (Sptlc1) and long chain base 2 (Sptlc2), two subunits of SPT, gene deficiency. Homozygous Sptlc11 and Sptlc2 mice are embryonic lethal, whereas heterozygous versions of both animals (Sptlc1+/?, Sptlc2+/?) are healthy. Analysis showed that, compared with WT mice, Sptlc1+/? and Sptlc2+/? mice had: (1) decreased liver Sptlc1 and Sptlc2 mRNA by 44% and 57% (P < 0.01 and P < 0.0001, respectively); (2) decreased liver Sptlc1 mass by 50% and Sptlc2 mass by 70% (P < 0.01 and P < 0.01, respectively), moreover, Sptlc1 mass decreased by 70% in Sptlc2+/? mouse liver, while Sptlc2 mass decreased by 53% in Sptlc1+/? mouse liver (P < 0.001 and P < 0.01, respectively); (3) decreased liver SPT activity by 45% and 60% (P < 0.01, respectively); (4) decreased liver ceramide (22% and 39%, P < 0.05 and P < 0.01, respectively) and sphingosine levels (22% and 31%, P < 0.05 and P < 0.01, respectively); (5) decreased plasma ceramide (45% and 39%, P < 0.01, respectively), sphingosine-1-phosphate (31% and 32%, P < 0.01, respectively) and sphingosine levels (22.5% and 25%, P < 0.01, respectively); (6) dramatically decreased plasma lysosphingomyelin (17-fold and 16-fold, P < 0.0001, respectively); and (7) no change of plasma sphingomyelin, triglyceride, total cholesterol, phospholipids, and liver sphingomyelin levels. These results indicated that both Sptlc1 and Sptlc2 interactions are necessary for SPT activity in vivo, and that SPT activity directly influences plasma sphingolipid levels. Furthermore, manipulation of SPT activity might well influence the course of such diseases as atherosclerosis.  相似文献   

17.
Ghrelin is the only known peripherally produced and centrally acting peptide hormone stimulating food intake. The acylation of ghrelin is essential for binding to its receptor. Recently, the ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) was identified in mice, rats and humans. In addition to gastric mucosal expression, GOAT was also detected in the circulation of rodents and its expression was dependent on metabolic status. We investigated whether GOAT is also present in human plasma and whether expression levels are affected under different conditions of body weight. Normal weight, anorexic and obese subjects with body mass index (BMI) 30–40, 40–50 and >50 were recruited (n = 9/group). In overnight fasted subjects GOAT protein expression was assessed by Western blot and ghrelin measured by ELISA. GOAT protein was detectable in human plasma. Anorexic patients showed reduced GOAT protein levels (−42%, p < 0.01) whereas obese patients with BMI > 50 had increased concentrations (+34%) compared to normal weight controls. Ghrelin levels were higher in anorexic patients compared to all other groups (+62–78%, p < 0.001). Plasma GOAT protein expression showed a positive correlation with BMI (r = 0.71, p < 0.001) and a negative correlation with ghrelin (r = −0.60, p < 0.001). Summarized, GOAT is also present in human plasma and GOAT protein levels depend on the metabolic environment with decreased levels in anorexic and increased levels in morbidly obese patients. These data may indicate that GOAT counteracts the adaptive changes of ghrelin observed under these conditions and ultimately contributes to the development or maintenance of anorexia and obesity as it is the only enzyme acylating ghrelin.  相似文献   

18.
19.
Linalool is a monoterpene often found as a major component of essential oils obtained from aromatic plant species, many of which are used in traditional medical systems as hypno-sedatives. Psychopharmacological evaluations of linalool (i.p. and i.c.v.) revealed marked sedative and anticonvulsant central effects in various mouse models. Considering this profile and alleged effects of inhaled lavender essential oil, the purpose of this study was to examine the sedative effects of inhaled linalool in mice. Mice were placed in an inhalation chamber during 60 min, in an atmosphere saturated with 1% or 3% linalool.Immediately after inhalation, animals were evaluated regarding locomotion, barbiturate-induced sleeping time, body temperature and motor coordination (rota-rod test). The 1% and 3% linalool increased (p<0.01) pentobarbital sleeping time and reduced (p<0.01) body temperature. The 3% linalool decreased (p<0.01) locomotion. Motor coordination was not affected. Hence, linalool inhaled for 1 h seems to induce sedation without significant impairment in motor abilities, a side effect shared by most psycholeptic drugs.  相似文献   

20.
Introduction/objectivesThe role of the placenta in diabetic mothers on fetal development and programming is unknown. Prolactin (PRL) produced by decidual endometrial cells may have an impact. Although full-length PRL is angiogenic, the processed form by bone morphogenetic protein-1 (BMP-1) and/or cathepsin D (CTSD) is antiangiogenic.The objectives were to investigate the involvement of decidual PRL and its antiangiogenic fragments in placentas from type-1 diabetic women (T1D) and from pregnant diabetic rats with lower offspring weights than controls.MethodsPRL, BMP-1, and CTSD gene expressions and PRL protein level were assessed in T1D placentas (n = 8) at delivery and compared to controls (n = 5). Wistar rats received, at day 7 of pregnancy, streptozotocin (STZ) (n = 5) or nicotinamide (NCT) plus STZ (n = 9) or vehicle (n = 9). Placental whole-genome gene expression and PRL western blots were performed at birth.ResultsIn human placentas, PRL (p < 0.05) and BMP-1 (p < 0.01) gene expressions were increased with a higher amount of cleaved PRL (p < 0.05) in T1D than controls. In rats, diabetes was more pronounced in STZ than in NCT–STZ group with intra-uterine growth restriction. Decidual prolactin-related protein (Dprp) (p < 0.01) and Bmp-1 (p < 0.001) genes were up-regulated in both diabetic groups, with an increased cleaved PRL amount in the STZ (p < 0.05) and NCT–STZ (p < 0.05) groups compared to controls. No difference in CTSD gene expression was observed in rats or women.ConclusionsAlterations in the levels of the PRL family are associated with maternal diabetes in both rats and T1D women suggesting that placental changes in these hormones impact on fetal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号