首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth and metal-extraction efficiency of plants when exposed to toxic metals can be enhanced by inoculating with certain bacteria, but the mechanisms of this process remain unclear. We report results from glasshouse experiments on the effect of Arthrobacter echigonensis MN1405 in promoting Phytolacca acinosa Roxb. growth when exposed to 100 mg/L Mn solution. Mn removal efficiency in solution was significantly enhanced by bacterial inoculation; Mn was accumulated in the root of P. acinosa Roxb. plant. The bacteria oxidized the Mn on root surface, which formed a Mn plaque to serve as a barrier or a containment to prevent metal toxicity. In this process, pH condition was an important factor on the effects of microbial-assisted heavy metal phytoremediation. Our finding suggests that A. echigonensis MN1405 assisted P. acinosa to achieve high remediation efficiency of Mn removal and accumulation in Mn contamination area.  相似文献   

2.
Manganese (Mn) is an essential metal for life. It is a key constituent of clue enzymes in the central nervous system, contributing to antioxidant defenses, energetic metabolism, ammonia detoxification, among other important functions. Until now, Mn transport mechanisms are partially understood; however, it is known that it shares some mechanisms of transport with iron. CNS is susceptible to Mn toxicity because it possesses mechanisms that allow Mn entry and favor its accumulation. Cases of occupational Mn exposure have been extensively reported in the literature; however, there are other ways of exposure, such as long-term parental nutrition and liver failure. Manganism and hepatic encephalopathy are the most common pathologies associated with the effects of Mn exposure. Both pathologies are associated with motor and psychiatric disturbances, related in turn to mechanisms of damage such as oxidative stress and neurotransmitters alterations, the dopaminergic system being one of the most affected. Although manganism and Parkinson??s disease share some characteristics, they differ in many aspects that are discussed here. The mechanisms for Mn transport and its participation in manganism and hepatic encephalopathy are also considered in this review. It is necessary to find an effective therapeutic strategy to decrease Mn levels in exposed individuals and to treat Mn long term effects. In the case of patients with chronic liver failure it would be worthwhile to test a low-Mn diet in order to ameliorate symptoms of hepatic encephalopathy possibly related to Mn accumulation.  相似文献   

3.
Background and Aims Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure.Methods Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn2+ and Al3+ in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth.Key Results In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn2+ activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma.Conclusions The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots.  相似文献   

4.
Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3rd, 4th and 5th week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.  相似文献   

5.
Manganese (Mn) is an essential micronutrient throughout all stages of plant development. Mn plays an important role in many metabolic processes in plants. It is of particular importance to photosynthetic organisms in the chloroplast of which a cluster of Mn atoms at the catalytic centre function in the light-induced water oxidation by photosystem II, and also function as a cofactor for a variety of enzymes, such as Mn-SOD. But excessive Mn is toxic to plants which is one of the most toxic metals in acid soils. The knowledge of Mn(2+) uptake and transport mechanisms, especially the genes responsible for transition metal transport, could facilitate the understanding of both Mn tolerance and toxicity in plants. Recently, several plant genes were identified to encode transporters with Mn(2+) transport activity, such as zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, natural resistance-associated macrophage protein (Nramp) transporters, cation/H(+) antiporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPase. In addition, excessive Mn frequently induces oxidative stress, then several defense enzymes and antioxidants are stimulated to scavenge the superoxide and hydrogen peroxide formed under stress. Mn-induced oxidative stress and anti-oxidative reaction are very important mechanisms of Mn toxicity and Mn tolerance respectively in plants. This article reviewed the transporters identified as or proposed to be functioning in Mn(2+) transport, Mn toxicity-induced oxidative stress, and the response of antioxidants and antioxidant enzymes in plants to excessive Mn to facilitate further study. Meanwhile, basing on our research results, new problems and views are brought forward.  相似文献   

6.
Mn- and Zn-deficiency or excess reduce plant growth and development. Engineering plants with enhanced metal tolerance and accumulation is a major goal in phytoremediation/phytostabilization. Moreover, improved growth under unfavourable mineral conditions contributes to better crop production. In this study, ECA3 cDNA from Arabidopsis thaliana, encoding a P2A-ATPase, was introduced into Nicotiana tabacum var. Xanthi, to examine its value for modifying responses to cations, primarily Mn, Zn and Ca. AtECA3 was ectopically expressed under the CaMV 35S promoter. Transgenic and wild-type plants were tested under hydroponic conditions for their responses to a range of metal exposures (low, moderate and high concentrations), and their tolerance and accumulation were evaluated. AtECA3 expression resulted in better growth of plants at moderate levels of Mn (2 μM) in the medium and enhanced tolerance to high Mn (100 μM). Transgenic plants were also more tolerant to Ca-deficiency conditions, although they showed no differences to wild-type with respect to overall Ca levels. Transgene expression did not produce one unique pattern of Mn and Zn accumulation but instead depended on the external concentration of the particular metal supplied. Thus the enhancement of plant productivity at moderate Mn levels and increased Mn tolerance at high (toxic) Mn supply, as well as the slight increase in Ca-deficiency tolerance seen in ECA3-transformed plants indicates that this gene could be useful in plant biotechnological strategies.  相似文献   

7.
Trace metals in mangrove seedlings: role of iron plaque formation   总被引:3,自引:0,他引:3  
Metal-rich mineral deposits on the roots of aquatic plants, denominated iron plaques, may moderate the uptake of essential, but potentially toxic metals by roots. We investigated the iron plaque formation on the fine, nutritive roots of mangrove seedlings growing in contrasting environments (oxidizing sand flat sediments and reducing mangrove forest sediments) in southeast Brazil. The results indicate that Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle seedlings developed an efficient exclusion of Fe, Mn, and Zn through iron plaque formation. This process seems to be influenced substantially by species-specific responses to environmental conditions. While Fe and Zn translocation to leaves appear to be suppressed by accumulation within root tissues, this did not appear to occur for Mn, suggesting that Mn trapping in rhizosphere sediments and iron plaque formation are the main mechanisms responsible for the Mn exclusion from the organism level. In addition to factors well recognized as affecting mangrove seedling development (e.g., salinity stress and nutrient availability), the mediation of trace metal uptake by iron plaque formation possibly contribute to determine the seedling adaptability to waterlogged conditions.  相似文献   

8.
BackgroundBeing an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer’s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far.MethodsIn this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated.ResultsCopper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 μM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted.ConclusionOne potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.  相似文献   

9.
To indentify Mn/Cd co-hyperaccumulatoion in Celosia argentea Linn., 2 pot experiments were conducted using Cd/Mn-amended and real contaminated soils, respectively. The interaction between Cd and Mn with regard to their accumulation in the plants was also assessed. The results indicated that C. argentea can simultaneously hyperaccumulate Cd and Mn. The maximum Cd and Mn concentrations in leaves were 276 and 29,000 mg/kg, respectively. Mn application significantly enhanced the biomass production and Cd accumulation in shoots (p < 0.05). However, Cd addition did not reduce Mn accumulation in the plants. The interactions between Cd and Mn in C. argentea differ from what was previously found in hydroponic experiments. This species grew healthy in soils taken from a Cd/Mn-contaminated site, indicating a high tolerance to Cd and Mn. The transfer and bioaccumulation factors of Cd and Mn were greater than 1, which showed that C. argentea had potential for Cd and Mn phytoextraction. Besides its potential practical benefits, C. argentea is an important resource to study the mechanisms of Cd/Mn hyperaccumulation and tolerance in plants.  相似文献   

10.
Manganese (Mn) is an essential nutrient that can be toxic in excess concentrations, especially during early development stages. The mechanisms of Mn toxicity is still unclear, and little information is available regarding the role of Mn speciation and fractionation in toxicology. We aimed to investigate the toxic effects of several chemical forms of Mn in embryos of Danio rerio exposed during different development stages, between 2 and 122 h post fertilization. We found a stage-specific increase of lethality associated with hatching and removal of the chorion. Mn(II), ([Mn(H2O)6]2+) appeared to be the most toxic species to embryos exposed for 48 h, and Mn(II) citrate was most toxic to embryos exposed for 72 and/or 120 h. Manganese toxicity was associated with calcium disruption, manganese speciation and metal fractionation, including bioaccumulation in tissue, granule fractions, organelles and denaturated proteins.  相似文献   

11.
Recent research on the ecology, physiology and genetics of metal resistance and accumulation in bacteria has significantly increased the basic understanding of microbiology in these areas. Research has clearly demonstrated the versatility of bacteria to cope with toxic metal ions. For example, certain strains of bacteria can efficiently efflux toxic ions such as cadmium, that normally exert an inhibitory effect on bacteria. Some bacteria such as Escherichia coli and Staphylococcus sp. can volatilize mercury via enzymatic transformations. It is also noteworthy that many of these resistance mechanisms are encoded on plasmids or transposons. By expanding the knowledge on metal-resistance and accumulation mechanisms in bacteria, it may be possible to utilize certain strains to recover precious metals such as gold and silver, or alternatively remove toxic metal ions from environments or products where their presence is undesirable.  相似文献   

12.
Since the toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic or essential metals, studies addressing the chemical interactions between trace elements are increasingly important. In this study correlations between the main toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements were evaluated in the tissues (liver, kidney and muscle) of 120 cattle from NW Spain, using Spearman rank correlation analysis based on analytical data obtained by ICP-AES. Although accumulation of toxic elements in cattle in this study is very low and trace essential metals are generally within the adequate ranges, there were significant associations between toxic and essential metals. Cd was positively correlated with most of the essential metals in the kidney, and with Ca, Co and Zn in the liver. Pb was significantly correlated with Co and Cu in the liver. A large number of significant associations between essential metals were found in the different tissues, these correlations being very strong between Ca, Cu, Fe, Mn, Mo and Zn in the kidney. Co was moderately correlated with most of the essential metals in the liver. In general, interactions between trace elements in this study were similar to those found in polluted areas or in experimental studies in animals receiving diets containing high levels of toxic metals or inadequate levels of nutritional essential elements. These interactions probably indicate that mineral balance in the body is regulated by important homeostatic mechanisms in which toxic elements compete with the essential metals, even at low levels of metal exposure. The knowledge of these correlations may be essential to understand the kinetic interactions of metals and their implications in the trace metal metabolism.  相似文献   

13.
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. l-Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of γ-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl2, BSO, or MnCl2 plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl2 or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).  相似文献   

14.
锰毒及植物耐性机理研究进展   总被引:21,自引:0,他引:21  
任立民  刘鹏 《生态学报》2007,27(1):357-367
综述了近些年国内外关于锰毒及植物耐锰机理的研究成果,并指出了存在的问题和发展前景。锰毒是酸性土壤上限制作物产量的重要因子,国内外针对锰毒及植物耐受机制进行了相关研究,但进展较为缓慢。锰对植物的毒害效应体现在不同的细胞组织及生理生化水平上,不同植物耐受锰的机理也存在差异性,但大都集中在有机酸的螯合解毒、内部积累、外部排斥及氧化等方面。某些锰胁迫所诱导的基因也被筛选出来,并且部分生物学功能得以鉴定。此外,锰与其他营养元素间的协同或拮抗作用也得以阐述,伴随锰超富积植物-商陆在中国的发现,对锰毒及植物耐性机理的深入研究和探讨,将会对植物修复技术的开展产生理论和实践意义。  相似文献   

15.
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.  相似文献   

16.
Chinese hamster ovary (CHO) cells are the predominant host cell line for the production of biopharmaceuticals, a growing industry currently worth more than $188 billion USD in global sales. CHO cells undergo programmed cell death (apoptosis) following different stresses encountered in cell culture, such as substrate limitation, accumulation of toxic by-products, and mechanical shear, hindering production. Genetic engineering strategies to reduce apoptosis in CHO cells have been investigated with mixed results. In this review, a contemporary understanding of the real complexity of apoptotic mechanisms and signaling pathways is described; followed by an overview of antiapoptotic cell line engineering strategies tested so far in CHO cells.  相似文献   

17.
The influence of different chelates applied in the soil primary on Al and secondary on Fe and Mn mobilization and their removal from solution was investigated. The work compared the efficiency of 10 mM tartaric acid and 3 mM EDTA in soil washing process and accumulation potential of Pistia stratiotes in rhizofiltration process. The plant response on the toxic element Al and other elements Fe and Mn was determined through the nitrogen and free amino acids content in plants. The efficiency of chelates decreased in order 10 mM tartaric acid > deionized water > 3 mM EDTA for all studied elements. P. stratiotes was able to remove up to 90% of elements during the 15 days period. Higher content of toxic element Al and potential toxic elements Fe and Mn were observed in the roots than in the leaves with the increased time. The trend of Al accumulation correlated with Fe accumulation (R2=0.89). Toxicity impact of high level of Al was observed by increased free amino acids (AA) level. Proline, histidine, glutamic acid and glycine were the most synthesised free AA in leaves. Total AA content in leaves was significantly higher under chelates addition compared to control.  相似文献   

18.
While traces of manganese (Mn) take part in important and essential functions in biology, elevated exposures have been shown to cause significant toxicity. Chronic exposure to the metal leads to manganese neurotoxicity (or manganism), a brain disorder that resembles Parkinsonism. Toxic effect mechanisms of Mn is not understood, toxic concentrations of manganese are not well defined and blood manganese concentration at which neurotoxicity occurs has not been identified. There are reports indicating that the most abundant Mn-species in Mn carriers within blood is the Mn-citrate complex. Despite the well-documented information about the toxic effects of Mn, there are scarce reports concerning the effects of manganese compounds on both structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of Mn with cell membranes, MnCl2, and the Mn-citrate complex were incubated with intact erythrocytes, isolated unsealead human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of the Mn compounds to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). In all these systems it was found that Mn2+ exerted considerable higher structural perturbations than the Mn-citrate complex.  相似文献   

19.
Manganese (Mn) is a required element for biological systems; however, its excessive exposure may lead to a neurological syndrome known as manganism. The aim of the present study was to assess the toxic effects of subacute exposure of Mn by measuring weight gain, motor performance, and biochemical parameters (complex I activity, lipid peroxides, and protein carbonyls) in brain mitochondria in rats. We also examined whether edaravone (EDA), a radical scavenger, exerts protective effects against Mn‐induced neurotoxicity. In addition, we evaluated the accumulation of Mn in brain regions using magnetic resonance imaging. Mn‐exposed rats revealed significantly impaired motor performance, weight loss, and Mn accumulation in particular brain area. Lipid peroxides and protein carbonyls were significantly increased in Mn‐exposed rats, whereas complex I activity was found to be decreased. EDA treatment significantly prevented mitochondrial oxidative damage and improved motor performance. These findings suggested that EDA might serve as a clinically effective agent against Mn‐induced neurotoxicity.  相似文献   

20.
Manganese (Mn) is crucially important for vital activity of cells and has many biological functions. Nevertheless, high doses of Mn taken up by an organism over a long period may cause neurodegenerative diseases such as manganism and Parkinsonism. The molecular mechanisms of this Mn toxicity are still poorly studied. It is now believed that Mn-induced pathophysiological neural processes are multifaceted and affect several metabolic pathways. In particular, Mn ions might affect the processes of DNA replication and repair. To test this possibility, we obtained an SKOV-3 cell line resistant to the toxic action of Mn ions. We found that these cells are characterized by the activation of poly(ADP-ribose)polymerase, which leads to increased ability to repair DNA. Thus, the model used here supports the suggestion that at least one cause of Mn cytotoxicity might be disorders of the processes involved in DNA replication and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号